

### **Special Publication 24**

12,400

226,705

250,152

239,217

259,392

91,845

BEAR

# Analysis of the Colorado **Coal Industry**

BEAR CREEK 13,000 44,171 46,100 5,282 BLUE RIBBON 12,600 15,294 89,373 101,771 129,055 150,963 BOURG STRIP 9,640 94,634 76,614 CAMED 11,800 31,800 229,655 283,072 124,634 CANADIAN STRIP 10,928 193,791 97,900 21,700 136,024 CANON MONARCH 10.700 14.284 CHIMNEY ROCK 13,230 38,676 8.425 255.013 78,786 259.477 CISSY LEE by Peter Rushworth 12,600 3,592 COAL BASIN 14,500 132,396 139,300 130.278 92,998 51,287 COAL GULCH 12,000 13,851 3.600 COLORADO COAL NO 1 12,200 26,334 T COLOWYO 1.072.113 1.699.400 2,642,084 10,728 3,130,390 3,153,419 DELAGUA NO 1 12,500 25.900 39,000 DELAGUA NO 2 12,500 4,000 67.756 DESERADO 10,100 32,113 DORCHESTER 11.100 73.317 172,599 584,832 DUTCH CREEK NO 1 161,208 147,100 14.500 156.533 45,386 77.463 DUTCH CREEK NO 2 14,000 225,464 208,200 101,145 257,492 241,927 EAGLE NO 5 10,500 539.616 556,100 473,773 693,062 1,200,681 EAGLE NO 9 173,000 10,500 79,065 EASTSIDE 13,200 253 EDNA STRIP 962.BA 10.500 ELDER 9,500 80 EASTERN 70 50 INTERIOR 40 30 20 10 COLORADO 0 1978 1979 1980 1981 1982

| NUCLA               | 11,680 | 102,394   | 121,800   | 93,069    | 60,260    | 61,237    |
|---------------------|--------|-----------|-----------|-----------|-----------|-----------|
| NUGAP               | 10,500 | 281       | 113       |           |           |           |
| OHIO CREEK          | 11,500 |           | 269       | 1,447     | 2,211     | 7,103     |
| ORCHARD VALLEY      | 11,000 | 435,896   | 722,470   | 761,824   | 976,796   | 1,246,197 |
| PEACOCK             | 13,400 |           | 100       | 650       | 305       |           |
| RED CANYON NO 1     | 10,600 | 426       | 9,840     | 93,258    | 137,698   | 64,442    |
| RIENAU NG 2         | 10,910 | 36,001    | 68,266    | 144,991   | 122,781   | 57,228    |
| ROADSIDE            | 11,800 | 449,749   | 827,800   | 603,464   | 664,427   | 929,323   |
| SENECA STRIP        | 10,700 | 1,372,251 | 1,611,805 | 1,778,916 | 1,227,945 | 1,313,711 |
| SOMERSET            | 12,500 | 650,210   | 900,777   | 854,697   | 668,622   | 453,409   |
| SUNLIGHT            | 12,610 | 487       | 471       | 884       | 989       | 1,218     |
| THOMPSON CREEK NO 1 | 13,004 | 15,733    | 18,900    | 40,596    | 115,185   | 97,553    |
| THOMPSON CREEK NO 3 | 13,760 | 18,207    | 14,000    | 1,812     | 4,469     | 11,736    |
| TOMAHAWK            | 10,000 | 35,231    | 70,741    | 24,076    | 101,336   | 41,915    |
| TRAPPER             | 9,800  | 1,332,985 | 2,328,700 | 2,014,376 | 2,093,012 | 2,001,106 |
| TRINIDAD BASIN      | 13,000 |           |           |           | 65,039    | 71,739    |
| TWIN PINES          | 10,500 | 36,691    | 37,124    | 34,872    | 22,099    |           |
| VIKING              | 13,012 | 16,342    | 49,682    | 23,515    | 37,014    | 1,858     |

Colorado Geological Survey Department of Natural Resources Denver, Colorado / 1984



COLORADO GEOLOGICAL SURVEY 1313 SHERMAN STREET DENVER, COLORADO 80203



PETER RUSHWORTH

# CGS LIBRARY

ANALYSIS OF THE COLORADO COAL INDUSTRY

SPECIAL PUBLICATION 24

#### EXECUTIVE SUMMARY

The Colorado coal industry is adjusting to changes in demand and to changes in the corporate structure of coal-holding companies and coal-consuming industries. Coal buyers are dominantly utilities which gain monopoly power over coal sellers in times of excess capacity and are captive to the market in times of short supply.

Changes in demand for coal products leave the steam coal product market with increasing significance. The independent coal industry must react in accordance with utility needs and wishes, otherwise utilities will seek to integrate operations. The coal producers of the present are not the producers of the future. Organizations holding most coal are typically not large producers at this time.

Petroleum companies hold increasing reserves of coal, but most companies in the extraction industry maintain petroleum interests. Concentration of petroleum interests in the coal industry serves to increase competition. Changes in the structure of the petroleum industry, however, will alter the coal-holding and coal production scenario at the time of transaction.

Coal and petroleum do not compete directly and are not substitutable. In the short- to mid-term, coal will not significantly enter the transportation sector. On the other hand, the economics of coal use dictate that despite slowing, the trend of coal-fired generators replacing oil- and gas-fired generators will continue. Shortages of petroleum will not significantly improve the market for coal.

Economies-of-scale in surface-mining Colorado coal are restrained by the geologic setting of the coal body. Typically, Colorado coal is thinner, contained in greater numbers of seams and is structurally more complex than coal mined in the Powder River Basin of Wyoming and Montana. It is therefore unlikely that technology and/or new mines could significantly improve the productivity of Colorado's surface mines. Technology, however, is capable of increasing underground mine productivity. Longwall mining systems are increasingly emplaced or on order for underground mines. The longwall system is efficient, but highly capital-intensive. It is capable of dealing with steeply dipping, but continuous coal seams common in Colorado. Productivity, and hence, cost of coal will improve relative to that observed in conventional or continuous methods of underground mining.

Coal price originates in the geometry of the coal body, acquisition cost, extraction efficiency, wages and productivity. Distance and terrain factors influence transport cost, and when added to mining cost, determines delivered price. Purchasers discriminate between substitutes based on equivalent cost. Coal prices are set by the bargaining power of buyers and sellers. Spot market prices react more quickly to changes in coal demand than long-term contract prices. Buyer flexibility is retained through purchases solely on the spot market. Security in coal purchases is obtained through long-term contracts. Balancing purchases from both markets gives buyers a measure of price security and stability of supply. Railroads created a market area for western coal by initiating unit train service. By disallowing access through rights-of-way, railroads have disenfranchised the only competition in bulk coal movement, the slurry pipeline. Long-standing methods of rail operation hamper coal marketability. Rail rates are based on historical cost and not actual cost. In other words, cost reductions available through new rail technology are not passed along to the consumer, but are embedded in return-on-investment to the railroad. Rail rates are different for different commodities and increases may be forgiven to selected customers.

Since 1978, rail rates increased faster than increases in the price of Colorado coal. Interstate rail hauls increased the delivered cost of coal 8.7 percent per year on a per million Btu basis. Intrastate rates resulted in a delivered cost of coal increasing at a rate of 9.9 percent per year, on average. Rapid increases in the delivered cost of Colorado coal prompt users to seek alternative sources.

Colorado is a relatively high-cost producer of coal. The marketshare of Colorado steam, met and residential/commercial coal is decreasing. The marketshare of Colorado industrial coal is increasing, but constituted only 15 percent of Colorado's 1983 domestic coal production. As in the product market, the geographic market for Colorado steam coal is also shrinking. Colorado coal products were in 27 state geographic markets in 1983 compared to 34 state geographic markets in 1982. Data suggest that at the eastern extent of the Colorado geographic market, western coals, including Colorado, are substituted by coals from the Eastern and Interior Coal Provinces. In the close-in market of Iowa, Nebraska, Kansas and Missouri, western producers are retaining marketshare, however, Colorado is losing to producers from other Rocky Mountain states. Texas and Mississippi are growth markets and marketshare of western coal producers doubled since 1978, and Eastern and Interior coal producers are losing marketshare. In the small Pacific market, Wyoming and Montana provided 90 to 96 percent of coal needs while Colorado marketshare decreased. Much of this decline is due to loss of the met coal market. Colorado is, not surprisingly, the most significant consumer of Colorado coal. However. Colorado is losing marketshare in its home base. Purchases of out-of-state coal are accelerating, and coal consumers are discriminating against Colorado coal. based, apparently, on relative price.

Statistical analysis indicates that a "pull-up" effect of increasing demand of Wyoming benefitting Colorado coal is nonexistent. Correlation of other Rocky Mountain producers and Colorado is significant only in the East and West South Central Market Region, Texas and Mississippi. A long-standing shift to western producers helps increase marketshare and production from all Western Coal Province producers.

Colorado coal is won from coal regions with varied geologic and topographic characteristics. Most production emanates from the Green River and Uinta Coal Regions. Between 1981 and 1983 the Uinta Coal Region increased production for the out-of-state market while production from the Green River Coal Region was down sharply for both in-state and out-of-state coal markets. The locus of production will shift south and east in Colorado to reduce the distance between production and areas of rapid growth in coal consumption. New coal production from the Raton Mesa Coal Region to serve the Texas and Mississippi markets is inevitable.

#### Colorado Coal Producers

In the first quarter of 1984 Texaco bought Getty, SoCal purchased Gulf and Damson Oil acquired Dorchester Gas. These takeovers involve a 23 percent share of 1983 Colorado coal production. Other mergers and acquisitions have exchanged coal properties since 1983. Williams Companies purchased Northwest Energy, holders of Hawk's Nest East and West, KN Energy acquired coal mines and properties from CF&I, Apache Energy and Minerals bought the Sunlight Mine in Garfield County and Perma Resources, in a joint venture, exchanged into Kaiser Steel coal holdings and markets. Other petroleum companies may have acquired a stake in the Colorado coal industry through obscure holding companies.

In much less than a year, a large share of actual and potential Colorado production changed hands, and, in most cases, furthers petroleum industry concentration in Colorado coal. Since 1981, petroleum-backed coal producers lost a 26 percent share of the market while overall production fell about 14 percent. It is probable that petroleum-backed Colorado coal companies absorbed most of the 2.3 million ton reduction in the Colorado steam coal product market since 1981.

#### Colorado Coal Consumers

Consumers of Colorado coal are situated over a wide geographic area, and have similarly diverse reasons for selecting Colorado coal. The importance of steam coal has increased although production is down to 12.2 million tons per year (mtpy) in 1983 from the peak 14.5 mtpy in 1981. The restructuring of the met coal industry shifted most points of demand to regions at the periphery of the present Colorado coal geographic market. Present met coal demand for Colorado is solely from the U.S. Steel plant in Provo, Utah. Met coal production peaked at 3.0 mtpy in 1979, and the 1983 production level was about 850,000 tpy. The coal product market is the only market where increases in industrial marketshare of Colorado production and increases in production are noted. In absolute terms, Colorado industrial coal product production increased from 1.0 mtpy in 1978 to 2.3 mtpy in 1983. Residential and commercial coal products are relatively unimportant, and have declined in overall significance despite increased production for this coal consumption sector.

#### Summary

The Colorado coal industry faces increasing competitive pressure on price and quality from price-searching domestic companies and low-cost foreign producers. It is inevitable that only low-cost mines and/or specialty producers survive. Cost-cutting, negotiations with transporters, tax breaks, incentives for consumption, research into coal utilization and improved marketing are essential to stabilization and growth of the Colorado coal industry.

#### CONTENTS

| SECTION                                                                                                                                       |                                                                                                                                                                                                | PAGE                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                                                                                                                                               | EXECUTIVE SUMMARY                                                                                                                                                                              | iii<br>xi<br>xii                                                                     |
| 1.0<br>1.1<br>1.1.1<br>1.1.2<br>1.2<br>1.2.1<br>1.2.2<br>1.2.2.1<br>1.2.2.1<br>1.2.2.2                                                        | COAL INDUSTRY STRUCTURE                                                                                                                                                                        | 1- 8<br>1- 8<br>1- 8<br>1- 9                                                         |
| 2.0<br>2.1<br>2.1.1<br>2.1.2<br>2.2<br>2.2.1<br>2.2.2<br>2.3<br>2.3.1<br>2.3.2<br>2.3.3                                                       | MARKET STRUCTURECoal Product and Geographic MarketsProduct MarketsGeographic MarketsTransportationTransportationSlurry PipelinesInterfuel SubstitutabilityUtilitiesSteelOther Industrial Users | 2- 1<br>2- 2<br>2- 2<br>2- 5<br>2- 5<br>2- 6<br>2- 6<br>2- 6<br>2- 7<br>2- 8<br>2- 8 |
| 3.0<br>3.1<br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5<br>3.1.6<br>3.1.7<br>3.2<br>3.2.1<br>3.3<br>3.3.1<br>3.3.2<br>3.3.3<br>3.3.4<br>3.3.5 | ANALYSIS OF THE COLORADO COAL INDUSTRY<br>Coal Characteristics and Resources                                                                                                                   | 3- 5<br>3- 7                                                                         |

#### CONTENTS, Continued

| 4.0<br>4.1     | SUMMARY                 | 4- 1<br>4- 1 |
|----------------|-------------------------|--------------|
| 4.1.1<br>4.1.2 | Colorado Coal Producers | 4- 2<br>4- 4 |
| 4.2<br>4.2.1   | Cost of Colorado Coal   | 4- 9<br>4- 9 |
| 4.2.2<br>4.2.3 | Cost of Transport       | 4-13<br>4-17 |
| 5.0            | REFERENCES              | 5-1          |

#### TABLE OF TABLES

TABLE

| 1-1                   | National Coal Production Statistics                         | 1-2  |
|-----------------------|-------------------------------------------------------------|------|
| 1-2                   | Reserves Held by Top Ten Holding Firms, 1982                | 1-4  |
| 1-3                   | Top Ten Coal Producers, 1982                                | 1- 5 |
| 2-1                   | Domestic Coal Consumption and Total Energy Consumption      | 2-3  |
| 2-2                   | Consumption of Coal by Electric Utilities                   | 2-4  |
| 2-3                   | Consumption of Coal by Industrial Sector                    | 2-4  |
| 2-4                   | Consumption of Coal by Residential and Commercial Sector .  | 2-4  |
| 2-5                   | State Geographic Markets of Colorado Coal                   | 2-5  |
| 3-1                   | Coal Production by Colorado Coal Region                     | 3-2  |
| 3-2                   | Production and Coal Quality of Distributed Coal by          |      |
|                       | Coal Region                                                 | 3-10 |
| 3-3                   | Production and Coal Quality of Distributed Coal by          |      |
|                       | Mining Method and Coal Region                               | 3-11 |
| 3-4                   | Percent Coal Distribution by Mining Method and Coal Region  | 3-12 |
| 3-5                   | Marketshare of Colorado Coal Production by Mining Method .  | 3-13 |
| 3-6                   | Marketshare of In-State and Out-of-State Coal Production    | • •• |
| •••                   | and Distribution, 1981 and 1983 by Coal Region              | 3-14 |
| 3-7                   | Origin of Coal Consumed in East North Central Market Region | 3-18 |
| 3-8                   | Origin of Coal Consumed in Illinois                         | 3-19 |
| 3-9                   | Origin of Coal Consumed in Indiana                          | 3-20 |
| 3-10                  | Marketshare of Point-of-Origin Coal Consumed in the         | 5 20 |
| 0 10                  | East North Central Market Region                            | 3-21 |
| 3-11                  | Origin of Coal Consumed in West North Central Market        | 5 21 |
| J 11                  |                                                             | 3-24 |
| 3-12                  | Origin of Coal Consumed in Iowa                             | 3-25 |
| 3-13                  | Origin of Coal Consumed in Kansas                           | 3-26 |
| 3-14                  | Origin of Coal Consumed in Nebraska                         | 3-27 |
| 3-14                  | Origin of Coal Consumed in Minnesota                        | 3-28 |
| 3-16                  | Origin of Coal Consumed in Missouri                         | 3-29 |
| 3-17                  | Origin of Coal Consumed in South Dakota                     | 3-30 |
| 3-18                  | Marketshare of Point-of-Origin Coal Consumed in the         | 5-50 |
| 5-10                  | West North Central Market Region                            | 3-31 |
| 3-19                  | Origin of Coal Consumed in East and West South Central      | 0 01 |
| <b>J</b> = <b>1</b> J | Market Region                                               | 3-34 |
| 3-20                  | Origin of Coal Consumed in Texas                            | 3-35 |
| 3-21                  | Origin of Coal Consumed in Mississippi                      | 3-36 |
| 3-22                  | Marketshare of Point-of-Origin Coal Consumed in             | 0 00 |
| 0 22                  | East and West South Central Market Region                   | 3-37 |
| 3-23                  | Origin of Coal Consumed in Mountain Market Region           | 3-40 |
| 3-24                  | Origin of Coal Consumed in Arizona                          | 3-41 |
| 3-25                  | Origin of Coal Consumed in Colorado                         | 3-42 |
| 3-26                  | Origin of Coal Consumed in Montana                          | 3-43 |
| 3-27                  | Origin of Coal Consumed in New Mexico                       | 3-44 |
| 3-28                  | Origin of Coal Consumed in Utah                             | 3-45 |
| 3-29                  | Origin of Coal Consumed in Wyoming                          | 3-46 |
| 3-30                  | Marketshare of Point-of-Origin Coal Consumed                | 0.0  |
| 5 50                  | in Mountain Market Region                                   | 3-47 |
| 3-31                  | Origin of Coal Consumed in Pacific Market Region            | 3-51 |
| 3-32                  | Origin of Coal Consumed in California                       | 3-52 |
| 3-33                  | Origin of Coal Consumed in Oregon                           | 3-53 |
| 3-34                  | Origin of Coal Consumed in Washington                       | 3-54 |
|                       |                                                             |      |

#### TABLE OF TABLES, Continued

| TABLE |                                                                                       | PAGE |
|-------|---------------------------------------------------------------------------------------|------|
| 3-35  | Marketshare of Point-of-Origin Coal Consumed in<br>Pacific Market Region              | 3-55 |
| 4 - 1 | Marketshare of Production by Corporate Entity                                         | 4-2  |
| 4-2   | Production and Heating Value by Corporate Entity                                      | 4-3  |
| 4-3   | Colorado Coal Product Markets                                                         | 4-4  |
| 4 - 4 | Origin of Coal Consumed within the Domestic                                           |      |
|       | Market Area of Colorado                                                               | 4-5  |
| 4 - 5 | Marketshare of Point-of-Origin Coal Consumed within the                               |      |
|       | Domestic Market Area of Colorado                                                      | 4-8  |
| 4-6   | U.S. Coal Mining Productivity by Coal Producing Region<br>and by Type of Mining, 1982 | 4-10 |
| 4 – 7 | Marketshare of Production and Distribution of Colorado                                |      |
|       | Coal by Coal Region                                                                   | 4-11 |
| 4-8   | U.S. Coal Production and Average Mine Price by Coal<br>Producing State, 1982          | 4-12 |
| 4-9   | Interstate Rail Rate Increases on Coal in Chronological<br>Order                      | 4-15 |
| 4-10  | Intrastate Rail Rate increases on Coal in Chronological                               |      |
|       | Order                                                                                 | 4-16 |
| 4-11  | Colorado Mine Prices (\$/t)                                                           | 4-17 |
| 4-12  | Production and Coal Quality by Mine, 1978 to 1983                                     | 4-18 |
| 4-13  | Average Price, Heating Value and Cost per Million Btu's                               |      |
|       | of Colorado Coal                                                                      | 4-19 |
| 4-14  | Average Increase in F.O.B. Cost of Colorado Coal and                                  |      |
|       | Interstate Rail Rates                                                                 | 4-19 |
| 4-15  | Average Increase in F.O.B. Cost of Colorado Coal and                                  |      |
|       | Intrastate Rail Rates                                                                 | 4-19 |

| FIGURE                                                   |                                                    |                                                                |                                                                         |      | PAGE                                                         |
|----------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------|------|--------------------------------------------------------------|
| 3-2 01<br>3-3 01<br>3-4 01<br>3-5 01<br>3-6 01<br>3-7 01 | rigin<br>rigin<br>rigin<br>rigin<br>rigin<br>rigin | of Coal<br>of Coal<br>of Coal<br>of Coal<br>of Coal<br>of Coal | Consumed in<br>Consumed in<br>Consumed in<br>Consumed in<br>Consumed in | Coal | 3-16<br>3-22<br>3-32<br>3-38<br>3-48<br>3-49<br>3-56<br>4- 6 |

#### Preface

This analysis is necessarily a series of snapshots of the dynamic changes experienced by the coal industry. The basic concepts involve the time-frames in which the coal industry can adapt to changes in demand. They are listed as follows:

| Short-Term | - | 0 to 2 years    |
|------------|---|-----------------|
| Mid-Term   | - | 2 to 5 years    |
| Long-Term  | - | 5 or more years |

These time-frames are moving targets since factors influencing coal consumption occur continuously. The 1973 Arab oil embargo and cutoff of Iranian oil imports in 1979 prompted new concepts of reliance on petroleum. Environmental, political and economic events also influence the coal industry.

The introduction of unit train service in the early 1960's opened up the Western market. Only in 1973 following the Arab oil embargo did Colorado production increase significantly. Recessions, embargos and legislation impacted the coal industry causing it to change or refine plans to produce coal. However, each new adjustment in the coal producing scenario was based on increasing production. Colorado coal production peaked in 1981, and is on decline, at least temporarily. National coal consumption apparently bottomed in 1982. This analysis of the Colorado coal industry focuses on the years 1978 through 1983.

Data were collected from different sources by different methods. It is certain that variations and discrepancies will be seen when comparing data from set to set. For example, State, Federal and the Keystone Coal Industry Manual production figures differ. State data are based on Colorado Geological Survey and Department of Mines numbers, but do not differentiate production from distributed and stockpiled coal. Federal data accounts for distributed and stockpiled coal. Federal sources of coal data typically do not include mines with less than 10,000 tpy production, whereas the intent of the State database Differences may result from poor estimation of a is all inclusive. non-response or error in entering data, such as substituting raw coal production for clean coal tonnages. Production data from Mine Safety and Health Administration is typically 97 to 98 percent of production reported to the Energy Information Administration. Coal distribution data from EIA coal production Districts 16 and 17 were corrected for distribution of New Mexico coal from the Raton Basin.

All opinions and conclusions in this report are my own, and do not necessarily reflect any State policy. I believe sufficient data are presented to allow the interested reader to engage in similar research for analysis of conclusions reached in this report, or to form a different viewpoint of the state of Colorado coal industry. Much basic data are incorporated in the sister publication "Forecast of the Colorado Coal Industry - Production and Employment" (Special Publication 25). Reorganization of the data, such as in redefining the geographic market, will change marketshare analysis.

Acquisition, modification and verification of data were the most significant impediments to the current study of the Colorado coal industry. A consistent, computer database would ease compilation of timely and useful data to the coal community. Methods of segregating and organizing data in this report bias results. For example, most producers in the conglomerate and consortium category (Section 4) maintain oil and gas operations, yet they were excluded from the group with petroleum parent companies. Since these data were compiled by hand it was not feasible to regroup data. In other words, the statistical validity of these groupings could not be checked.

Coal production data acquired by the State should be modified. Monthly reports are not adjusted consistently for non-response and employment data is often not realistic. In addition, it is not clear if clean or raw tons are reported or if employment is total employed or miners in production. The State no longer collects coal distribution data by county. The premise of Colorado Geological Survey Special Publication 25, a forecast of the coal industry, is that county distribution of coal may be used to predict employment.

The collection of coal production data by the State should be verified with Energy Information Administration and Mine Safety and Health Administration data on a regular basis. Coal distribution data, even on a simple percentage basis to various markets, would allow the State to analyze the viability of the coal industry. Replacing monthly production and employment reports with consistent quarterly reports including percent distribution to market would benefit the State.

#### Acknowledgements

This work was made possible by a grant from the Department of Local Affairs, State of Colorado. Thanks are due to Betty Jones, Valerie Taylor-Pierce, and Cynthia Torres for typing the manuscript. I also wish to thank Bruce S. Kelso and L. R. Ladwig for reviewing the manuscript. Also noted is the assistance of Mr. Gordon King of the Colorado Public Utilities Commission for analysis of coal haulage rates.

#### 1.0 COAL INDUSTRY STRUCTURE

The coal marketplace is composed of buyers with singular interests and sellers with varied interests. In addition, product quality, price and technology play a significant role in the desirability of coal as a commodity. Sellers of coal are separable by corporate structure, financial and political power and regional bias. There are at least seven main distinctions among coal sellers:

- Conglomerates/Consortiums (Peabody, Dupont, W.R. Grace/Hanna)
- Petroleum-(Arco, Exxon, Sunedco, KN Energy)
- Independents-(North American Coal, Bear Coal)
- . Utilities-(Nerco, Utah Power & Light, Colorado Ute Electric Coop.)
- Steel Companies-(U.S. Steel)
- Small Producers-(less than 100,000 tpy)
- Regional Product Miners-(East versus West)

Coal buyers are entities committed to combusting a depletable product. Utilities require a stable, uniform supply to match demand for electricity. As an industry, utilities are gaining power in coal purchases. However, there are many individual utilities and hundreds of coal sellers. It is likely that the coal industry will strive more and more to give the utilities the product and price requested with increasing degrees of reliability. Utilities seek long-term supply contracts from one reliable source. This prudent desire corresponds to an industry in the business of continuously supplying electricity to its customers. On the other hand, the the coal industry by hoarding prior to an anticipated strike. This practice tends to distort production records in the months prior to UMWA strikes and reduces the impact of a strike on the coal buyer.

It is not surprising that utilities seek to integrate their operations into the coal supply business. Integration eases supply problems, and increases the utility's knowledge of the coal business. Furthermore, new mines attempt to emulate their utility customers by more or less continuous operation, large loading facilities for expediting unit-train transport and creation of incentives to keep mines non-union. Captive coal mines are mines dedicated to one customer, the owner/operator. Significantly, captive coal production in the utility industry increased from 2.2 percent in 1950 to 11.8 percent in 1981 (Keystone, 1982). Utilities not currently producing captive coal are increasingly likely to hold coal properties (GAO, 1975).

Table 1-1 reflects national production data after 1969, at which time the Federal Mine Health and Safety Act was passed. These regulations caused significant productivity decreases, forced marginal operators to leave the industry, and higher prices resulted. The large increase in price between 1973 and 1974 is mainly due to price increases on the spot market. The spot market price is higher than the average long-term contract price. Between 1973 and 1974 the Arab oil embargo and the anticipated 1974 UMWA strike, the spot market surged ahead to its correlative pricing to long-term contract coal. Spot market coal is used as a benchmark for contract coal prices. The large rise in spot coal prices initiated the rise in contract coal prices during this period. When the spot market price increased in 1973, utilities competed with expanding national and international demand for coal. Since it was necessary to purchase

|                                                |                                        | יטאר יהטו                         |                             | THETHE                      | יונטחהי כי                  |                              |                              | 142 <sup>1</sup> 247         | CURE FRANCEILUN SINITSILG (NOUTELEN MEISTUNE) YKKIUUS (EMNS)     | la la                        |                              |                              |                               |                               |
|------------------------------------------------|----------------------------------------|-----------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------|------------------------------|------------------------------|------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------|
| I TEM                                          | 1969                                   | 1970                              | 1971                        | 1972                        | 1973                        | 1974                         | 1975                         | 1976                         | 1977                                                             | 1978                         | 1979                         | 1980                         | 1991                          | 1982                          |
| PRODUCTION<br>(t × 1000000)<br>Valie           | 560                                    | 602                               | 552                         | 595                         | 592                         | £03                          | 648                          | 678                          | 691                                                              | 665                          | 776                          | 824                          | 818                           | 820                           |
| (\$ x 100000)<br>Exports                       | 2,795                                  | 3,773                             | 3,904                       | 4,562                       | 5,049                       |                              | 12,472                       | 9,502 12,472 13,189 13,705   | 13,705                                                           | 14,486                       | 18,359                       | 20,196                       |                               | 20,066 22,543                 |
| (t x 1000)<br>Imprires                         | 56,234                                 | 70,944                            | 56,633                      | 55,960                      | 52,870                      | 59,926                       | 65,669                       | 59,406                       | 53,687                                                           | 39,825                       | 64,782                       | 89,947                       | 110,292 105,297               | 105,297                       |
| (t x 1000)                                     | 109                                    | 36                                | 111                         | 47                          | 127                         | 2,080                        | 940                          |                              | 1,203 1,647 2,953                                                | 2,953                        | 2,059                        | 1,194                        | 1,043                         | 620                           |
| (t x 100000)                                   | 507                                    | 515                               | 194                         | 517                         | 556                         | 223                          | 556                          |                              | 620                                                              | 621                          | 677                          |                              | 728                           | 705                           |
|                                                |                                        |                                   |                             |                             |                             |                              |                              |                              |                                                                  |                              |                              | 0<br>1<br>5<br>1<br>1<br>1   | *                             |                               |
| UNDERGROUND (2)<br>Surface (2)                 | <ul><li>x) 61.9</li><li>38.1</li></ul> | 56.2<br>43.8                      | <b>50.</b> 0<br>50.0        | 51.1<br>48.9                | 50.6<br>49.4                | 46.0                         | 45.2<br>54.8                 | 43.4<br>56.6                 | 38.5<br>61.5                                                     | 36.4<br>63.6                 | 41.3<br>58.7                 | 40.9<br>59.1                 | 39.7<br><b>60.</b> 3          | 38.0<br>62.0                  |
| FOB MINE (\$/t)<br>Rail (\$/t)<br>Total (\$/t) | <pre>\$4.65 \$3.10 \$7.75</pre>        | <b>\$5.89</b><br>\$3.41<br>\$9.30 | \$6.66<br>\$3.70<br>\$10.36 | \$7.35<br>\$3.67<br>\$11.02 | \$8.53<br>\$3.71<br>\$12.24 | \$15.75<br>\$4.71<br>\$20.46 | \$19.23<br>\$5.23<br>\$24.46 | \$19.43<br>\$5.86<br>\$25.29 | <b>\$19.82</b> \$21.78 \$<br>\$6.48 \$7.32<br>\$26.30 \$29.10 \$ | \$21.78<br>\$7.32<br>\$29.10 | \$23.05<br>\$8.17<br>\$31.22 | \$24.57<br>\$9.48<br>\$34.05 | \$26.01<br>\$11.31<br>\$37.32 | \$27.50<br>\$12.50<br>\$40.00 |

TABLE 1-1 -- NATIONAL COAL PRODUCTION STATISTICS (MODIFIED AFTER KEYSTONE, VARIOUS YEARS)

coal at whatever price, the price increased sharply. The long-term contract market simulates the captive coal market in that neither are available to the spot market. In addition, escalators and pass-through costs are negotiated so that the supplier does not absorb the cost of inflation; it is passed through to the consumer.

#### 1.1 Competition

The 1978 Department of Justice report dealing with competition in the coal industry noted several problems in determining industry concentration. Production of coal, sales, and deliveries are not an appropriate measure of a firm's ability to produce in the future, since coal is a depletable asset. The study indicated that reserve holdings were more indicative of concentration since these data directly reflect the potential future production of a company.

The universe of uncommitted, non-Federal coal was used as the basis for computing the four- and ten-firm concentration ratios. It should be noted that the universe will change as more information is obtained. The reserve universe in 1982 was 472 billion tons according to the Keystone Coal Industry Manual. Table 1-2 shows the reserve base of the top ten holding companies in 1982. The top four firms hold 10.0 percent of current U.S. demonstrated reserves. The top ten firms hold 17.4 percent of the U.S. coal reserves. It is significant that the largest coal holder, Burlington Northern, is a railroad and cannot directly develop its reserves, although its subsidiary, Meridian Land, is set up to do so. Union Pacific, also a railroad, organized a holding company and has been in coal mining for some time. With the exception of North American Coal Company, the remainder of the top ten coal companies are held by petroleum firms. Table 1-3 lists the top ten coal producers of 1982. Of the top ten coal holders, Table 1-2, only four were among the top ten producers.

In 1974 the petroleum industry accounted for 19 percent of production and 14 percent of the demonstrated reserve base (GAO, 1977). Currently, 37 petroleum firms control 15 percent, or about 71.4 billion tons, of the demonstrated reserve base of the United States. Industry domination by petroleum companies is unlikely; furthermore, since coal and oil do not compete in the same markets it is likely that petroleum industry expansion is simply one method of diversification.

Although assuring competition in the coal industry is critical in Federal leasing decisions, other forms of competition will affect the coal industry in the mid-1980's. The United States coal industry faces increasing competition from foreign coals in price and quality. For example, Exxon's Cerrejon Project in Columbia will compete in many established American markets served by ports-of-entry. Coals from Poland, South Africa, China and Australia will displace American coals in our export market and at home to some extent.

Competition is increasing as market pressure forces down the price of coal. Coal producers become price-searchers, lowering the price of coal to find a market. Those producers able to survive will retain a market, others must leave the industry.

#### Table 1-2 Reserves Held By Top 10 Holding Firms, 1982 (After Keystone, 1983)

| Rank | Firm                     | Reserves<br>(Million Tons) | Percent |
|------|--------------------------|----------------------------|---------|
| 1    | Burlington Northern      | 14,700                     | 3.1     |
| 2    | Continental Oil (Dupont) | 13,700                     | 2.9     |
| 3    | Union Pacific            | 10,000                     | 2.1     |
| 4    | Exxon                    | 9,200                      | 1.9     |
| 5    | Peabody                  | 8,560                      | 1.8     |
| 6    | Phillips Petroleum       | 8,000                      | 1.7     |
| 7    | El Paso Natural Gas      | 5,600                      | 1.2     |
| 8    | North American Coal      | 5,200                      | 1.1     |
| 9    | Occidental Petroleum     | 3,800                      | 0.8     |
| 10   | Mobil                    | 3,500                      | 0.7     |

Total Non-Federal Universe = 472,700 million tons

|           | Table   | e 1-3     |       |
|-----------|---------|-----------|-------|
| Top 10    | Coal Pr | roducers, | 1982  |
| (Modified | after   | Keystone, | 1983) |

| Group or Company<br>(                                                                                                                                                         | Production<br>thousands of short tons)  | Percent of<br>1982<br>Production                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------|
| Peabody<br>Consolidation (Dupont)<br>AMAX<br>Texas Utilities<br>A.T. Massey (Royal Duto<br>Island Creek (Occidenta<br>Anaconda<br>Exxon<br>Pittston<br>Nerco (Pacific Power & | 1) 20,952<br>19,142<br>18,594<br>16,054 | 6.9<br>5.6<br>4.7<br>3.2<br>2.5<br>2.5<br>2.5<br>2.3<br>2.2<br>1.9<br>1.8 |
| 1982 Production = 832,5<br>(EIA, 1983)                                                                                                                                        | 24,000                                  |                                                                           |

#### 1.1.1 Pricing Mechanisms

The availability of coal lands is the main determinant of pricing coal as a scarce good. The Federal government is the chief coal holder and as overseer of the resource is able to set the price of coal through leasing coal properties. Political, not economic, decisions drive the Federal coal leasing program. Lease bidding, in theory, extracts potential future profits above the opportunity cost and places them in the Treasury. Accelerated leasing keeps prices down by increasing supply. Lower coal prices induces lower cost coal but penalizes those producers buying at earlier, relatively higher prices, and tends to reduce the price of competitive fuels.

Profit-seeking companies seek to maximize the net present value of the resource over time. Developing coal depletes the asset leading to a greater expense within a mine and, as time passes, through the industry. As in all depletable resources the user must pay a premium to the owner of the coal. The premium is the present value of returns, or opportunity cost, given up by the owner for not waiting until later to develop the property. This is the rent paid for a scarce good.

If a coal body cannot be mined at a cost acceptable to the user it will not be mined. Within the universe of coal bodies like substitutes are available at a price. Coal mines of unequal size and differing coal quality are distributed in coal basins irregularly due to topography and ownership patterns. Depletion of coal in the supplier mines makes more distant, but lower mining-cost coal more attractive. Rewards accrue to the low-cost miner.

Coal mining costs originate in the geometry of the coal body and the mining method. The following are major cost areas in coal extraction:

- . Geology
- . Mining Method
- . Capacity
- . Labor (Productivity)
- . Labor (Wages)
- . Depletion
- . Product Quality
- . Royalties
- Taxes

Coal seam geometry dictates extraction efficiency associated with the selected mining method. Colorado coal formed under conditions different, and less favorable, than those of the Powder River Basin. Economies-of-scale are possible, but mine capacity of Colorado mines is limited. For example, the 1982 production from the Thunder Basin Mine in Wyoming exceeded total 1983 Colorado production.

Productivity at Colorado mines is increasing but apparently the productivity of surface mines has peaked, at least temporarily. Increases in productivity are from new underground mines, higher utilization and new equipment at underground mines. Productivity increases are essential to decreasing the relative average cost of Colorado coal. The effects of depletion are counteracted by continuing exploration for new coal properties and installation of new mines. The **Geolegic** Forces operating on Colorado coal created a wide array of coal products. Given time any of these coal products could be produced upon sufficient demand. In the short-term, coal product switching is constrained by limitations of existing mines. However, in the long-term, new mines may open to meet requirements of any new market. It is certain, therefore, that Colorado will never be shut out of meeting coal demand, however, price constraints will limit all markets.

Royalties and taxes act to increase the cost of coal to the consumer. If set as a fixed fee, low-cost coal is saddled with a higher percentage of surcharge, but remains the same relative price difference between low-cost and high-cost coal. On the other hand, if surcharges are a percentage of cost then high-cost coal bears a proportionately greater burden, the differential favors low-cost coal. Upon renewal of pre-1976 Federal leases royalty rates will increase from \$0.15 to \$0.17 per ton to eight percent of value for underground coal and 12.5 percent of value for surface coal (Colorado Mining Association, 1981). Colorado coal will pay higher taxes due simply to its higher cost, increasing the desirability of substitutes with the net result of market loss and drop in production.

#### 1.1.2 Barriers-to-Entry

Large amounts of capital are required to start and run a mine. In most industries up-front capital requirements are a barrier-to-entry. However, with coal in the ground an asset is identifiable, it may be tested and proven. If a large parcel of land is available with sufficient reserves of desirable quality a long-term contract may be sought and obtained. With a contract and assured purchase of the supply, capital is generally available. According to GAO (1977) the new entrant should have mining expertise otherwise, without a track record, expectations are uncertain, but formation of joint ventures are a remedy (U.S. Bureau of Mines, 1976).

If output at the minimum efficient scale is large relative to the total market then economies-of-scale are a barrier-to-entry. Entry of a new mine at minimum efficient scale increases the supply, depressing prices and making marginal properties unprofitable. The addition of salable coal depresses market price to the level necessary to support the increased demand brought about by the added product.

Holding coal and obtaining reserves are also barriers-to-entry. Long-term contracts are unavailable to new participants without sufficient capital if no coal is held. In other words, control of reserves is equivalent to the entry requirement for capital formation. Overall, attempts to obtain reserves pushes up the price of reserves enough to eliminate excess profit (Department of Justice, 1978).

Similarly, the Federal Government is the prime force in the artificial restriction of coal company access to reserves. Restrictions or moratoriums on Federal leasing creates barriers-to-entry by holding back reserves. Through withholding, the cost of all reserves is increased. Due to Federal government positioning in the coal market some "costly" projects must be undertaken now whereas some future projects will be relatively low-cost. Royalty demands from the government will only partially offset the large future profit to be made by coal companies or railroads holding coal. The situation has arisen since the Federal government, the owner of most U.S. coal, decided to withhold coal from the market, essentially creating an artificial price support.

Due to the nature and geometry of coal bodies and markets for Colorado coal economies-of-scale are not barriers-to-entry. Small producers with specialty coal products and large producers with low-cost homogeneous coal products are both able to mine coal, and as markets permit, sell coal. Taxes, royalty payments and rent are not barriers-to-entry, although disproportionate royalty payments paid by relatively high-cost producers will create barriersto-markets.

Taxes are not barriers-to-entry, but create disincentives. For example, Colorado unitary tax is often cited as a restriction on the formation of joint ventures and other countries shun operating in such an environment. A barrier-to-market is created since joint ventures with foreign concerns is a seeming prerequisite for a coal export market.

#### 1.2 Integration

Integration of consuming industries into the coal industry has both positive and negative effects. Oligopolistic industries such as steelmakers or brewers have an incentive to produce the necessary quality and quantity of coal required for their process at the lowest cost. The economic profit which would have been due an independent coal operator is embedded in their final product. The lower cost of the final product is a cost advantage over competitors.

On the other hand, monopolistic industries, specifically utilities, are highly regulated and possibly lack the incentive to reduce mining costs. Consumers of coal-generated electricity pay for the mining cost regardless of the efficiency of mining. Utility-owned coal is an assured supply upon which boilers may be most effectively designed. Whether such stability could be obtained at lower cost from an independent source is a difficult question for regulatory agencies. However, competition within the electric utility industry will serve to increase efficiency and reduce costs.

#### 1.2.1 Integration by Oligopolistic Industries

Profit-seeking coal-consuming industries have an incentive to diversify into coal to reduce costs. Met coal is an essential ingredient to steel-making. Integrated steel companies will have an advantage if captive met coal mines serve company needs. Surplus coal in this event can be sold on the spot market or may be exported since met coal is a high value commodity. Large industrial users may also benefit from integrating into coal if economies-of-scale justify the expansion. Locally, Coors Industries powers some of its industrial capabilities in glass and porcelain fabrication, as well as the brewery, by using Colorado coal from one captive mine and other sources.

#### 1.2.2 Integration by Monopolistic Industries

Two monopolistic industries have stakes in the coal industry. Utilities are coal consumers and are presently the largest purchasers of coal. Railroads own coal lands but are prohibited from directly mining them. Both industries are regulated by government bodies. Railroads are excluded from the coal industry. The market power of railroads in coal is due to a subsidy by the U.S. government and exclusion of the railroads as coal producers is also due to regulation.

#### 1.2.2.1 Railroads

Rail is currently the most widely available mode of bulk coal transport, railroads serve both the producer and the consumer. If railroads could mine coal under their land, effectively becoming a producer, then restricting the quality of rail service or altering the transport cost would bid the price of coal up. Railroads are not permitted to hold Federal leases or to mine coal except for their own use. The pattern of land ownership along land grant rights-of-way alternates in one square mile segments of railroad and Federal land on both sides of the right-of-way. The checkerboard pattern of land ownership means neither the Federal government nor the railroad can assemble enough land to plan an efficient mine. Although the coal is obviously well-located on a transport route the holding railroad is prohibited from transporting its own coal. Consequently, a stalemate exists. The railroad's method of by-passing legislation prohibiting railroad integration into the coal industry is to form a holding company.

#### 1.2.2.2 Utilities

Integration of utilities into the coal industry allows several efficiencies. Most significantly, utilities producing from captive mines are not bound by long-term contracts with independents. Costs due to supply interruptions from other sources are minimized. Matching of coal mine production with utility needs are greatly improved, and this improved coordination may net lower operating costs.

Long-term contracts between independent mines and utilities are incomplete in that every possibility cannot be taken into account (Dept. Justice, 1978). A monopoly exists between buyer and seller. Avoiding this monopolistic situation and struggle for bargaining power and price over the opposite party is possible through vertical integration of the utility.

On the other hand, the inherent monopoly of electric utilities is not restrained by competitive forces, but by regulation. Price regulation covers distribution and power generation but usually not production of coal. Coal mining by a utility would be an area where an attempt to gain monopolistic profit could occur outside present regulation. Unchecked coal prices paid by a utility could lead to higher electricity costs resulting in transfer of income from electricity consumers to investors in electric utilities.

#### 2.0 MARKET STRUCTURE

The coal industry is capital-intensive and can react only slowly to changing economic circumstances. Time-frames for decision-making applied to the coal industry are specified as follows:

Short-Term

The short-term does not allow much leeway in meeting new market conditions. This time period is highly inelastic since expanded production must be preceded by extensive mine planning and equipment purchases. Existing mines can increase production by either increasing work time or opening new working sections with under-utilized equipment.

Mid-Term

The mid-term response of the coal industry is observed within two to five years. This is about the time needed to bring a mine already in the planning stages online to production. Increased storage or production capabilities are possible within this time period. In addition, new workers may be hired and trained to full productivity. However, within the mid-term, new companies may not be able to enter the market.

Long-Term

The long-term is a time period in excess of five years. New mines and reserves may be evaluated and brought into production. Older operating mines may be depleted and closed. The basic cost factors of the industry set the F.O.B. price of coal.

.Labor .Transport/Transhipment .Capital Requirements .Government .Reserves and Reserve Availability

In a competitive environment, the cost of coal will be closely correlated with these long-run average costs.

2.1 Coal Product and Geographic Markets

Coal was discovered near the base of the foothills 14 miles north of Golden in 1859. Significant Colorado coal mining began during the Civil War and grew to about one mtpy in 1880. The development of a concentrated energy resource was the initial impetus for manufacturing in Colorado. The emergence of coal as a major fuel source began as the supply of fuel wood depleted. Early nineteenth century applications of coal included specialty blacksmithing and ironwork. Early coal mining was highly labor-intensive, and sophisticated mechanization did not exist for extensive surface mining, therefore most coal was mined underground.

The expansion of the railroad system and development of the coal-fired steam engine greatly contributed to the consumption of coal. Railroads were the

chief consumer and transporter of coal. Secondary effects included expansion of the steel industry, paralleling railroad growth, and replacement of wood-based charcoal with coal for iron reduction. In addition, the desire to ship coal greatly expanded the transportation network of roads and rail.

Increasingly, coal was sought for industrial, residential and electrical generation. Although prices were relatively low through the 1920's and 1930's petroleum gained marketshare due to its regulated underpricing. The shift in industrial demand to non-coal fuel sources marked the second significant decline in the coal production curve. In 1945, reliance on coal was 50 percent of energy consumption, in 1973 marketshare of coal was 18 percent. Ironically, the railroads contributed to part of this decline. Railroad consumption dropped from 62 mtpy in 1950 to 0.1 mtpy in 1973 (Schmidt, 1976).

Coal is a heterogeneous product with widely variable chemical properties which influence its purchase and associated costs. A relatively high heating value indicates a relatively low transport cost per million Btu's, other factors being equal. Similarly, low heating value coals exhibit a high transport cost and must be used closer to its source in order to equilibrate total cost with the cost of coal from another source. Product and geographic markets are determined by the intrinsic value of a specific coal, the associated transport cost and the availability of substitutes at a comparable price.

2.1.1 Product Markets

The basic product markets of coal are:

.Steam .Metallurgical (met) .Industrial/Specialty .Residential/Commercial

The largest product market is long-term contract steam coal for utilities. Typically, coal boilers are most efficient when one type of coal is used exclusively. Blending of coals from several sources is another method of achieving a relatively homogeneous product.

Overall, the coal product market is expanding on the domestic front, as Table 2-1 indicates. On average, the energy contribution of coal in quadrillion Btu's increased marketshare 2.6 percent per year since 1973 with respect to overall energy consumption. The marketshare of coal is about 22 percent of the total energy consumed in 1983. In absolute terms, coal provides increasing increments to a presently shrinking market demand for energy.

Following the "Energy Crisis" of 1973-1974 the long-term response of the coal consuming community was not observed until 1979 or about five years later. Between 1979 and 1983 the marketshare of coal increased from 19.0 to 22.5 percent or an average annual percent change of 4.3 percent per year. Coal use might be expected to expand at this rate at least in the short- to mid-term until relative equilibrium is reached for all forms of energy and competing fuels.

#### Table 2-1. DOMESTIC COAL CONSUMPTION AND TOTAL ENERGY CONSUMPTION (in Quadrillion Btu's)

| Year | Domestic Coal<br>Consumption | Total Energy<br>Consumption | Percent |
|------|------------------------------|-----------------------------|---------|
| 1973 | 12.903                       | 74.212                      | 17.4    |
| 1974 | 12.596                       | 72.479                      | 17.4    |
| 1975 | 12.601                       | 70.485                      | 17.9    |
| 1976 | 13.519                       | 74.297                      | 18.2    |
| 1977 | 13.848                       | 76.215                      | 18.2    |
| 1978 | 13.710                       | 78.039                      | 17.6    |
| 1979 | 14.983                       | 78.845                      | 19.0    |
| 1980 | 15.373                       | 75.900                      | 20.3    |
| 1981 | 15.860                       | 73.940                      | 21.4    |
| 1982 | 15.291                       | 70.822                      | 21.6    |
| 1983 | 15.850                       | 70.454                      | 22.5    |

(Modified from EIA Monthly Energy Review March, 1984)

Table 2-2 shows coal consumption trends in the electric utility industry. Coal consumption in this sector increased steadily since about 1960. Over half of the nation's electrical output is generated by coal combustion. Since 1979 electric utilities have increased marketshare of coal, in energy equivalents, from 46.68 percent to about 55.03 percent in 1983, yielding an average rate of increase of 4.2 percent per year. Coal consumption is most sensitive to changes in consumption by electric utilities. Political, environmental and economic uncertainties bearing on the coal industry will affect the prime consumers of coal in an uncertain fashion.

Table 2-3 reflects trends in coal consumption in the industrial sector. In energy equivalents, coal use dropped 4.60 percent per year since 1973 in this consumption group. Since 1979 the average decline in the marketshare of coal consumption is 3.54 percent per year. Included in this group are manufacturing, mining and steelmakers. A floor on the rate of decrease of coal consumption may be nearing since coal is essential to steelmaking and others are committed to coal by virtue of sunk costs and proximity of fuel supply.

Table 2-4 lists trends in coal consumption in the residential and commercial sectors. Since 1979 the average rate of increase, in energy equivalents, in coal consumption was 1.79 percent per year. This sector is most likely to be able to switch fuels to petroleum, natural gas or electricity and may be more sensitive to recessionary effects. Over the long-term, the residential and commercial sector will not be a significant market for coal sellers.

## Table 2-2 CONSUMPTION OF COAL BY ELECTRIC UTILITIES (in Quadrillion Btu's)

| Year         | Total Coal Consumed | Total Energy Consumed | Percent        |
|--------------|---------------------|-----------------------|----------------|
| 1973         | 8.658               | 19.852                | 43.61          |
| 1974         | 8.535               | 20.023                | 42.63          |
| 1975         | 8.786               | 20.350<br>21.573      | 43.17<br>45.06 |
| 1976<br>1977 | 9.720<br>10.243     | 22.694                | 45.14          |
| 1978         | 10.236              | 23.722                | 43.15          |
| 1979         | 11.264              | 24.129                | 46.68          |
| 1980         | 12.122              | 24.501                | 49.48          |
| 1981         | 12.583              | 24.752<br>24.271      | 50.84<br>51.84 |
| 1982<br>1983 | 12.582<br>13.234    | 24.271                | 55.03          |

(Modified from EIA Monthly Energy Review, March 1984)

#### Table 2-3 CONSUMPTION OF COAL BY INDUSTRIAL SECTOR (in Quadrillion Btu's)

| Year | Total Coal Consumed | Total Energy Consumed | Percent |
|------|---------------------|-----------------------|---------|
| 1973 | 3.984               | 31.463                | 12.66   |
| 1974 | 3.800               | 30.630                | 12.41   |
| 1975 | 3.602               | 28.343                | 12.71   |
| 1976 | 3.595               | 30.177                | 11.91   |
| 1977 | 3.394               | 31.021                | 10.94   |
| 1978 | 3.258               | 31.363                | 10.39   |
| 1979 | 3.532               | 32.567                | 10.85   |
| 1980 | 3.103               | 30.549                | 10.16   |
| 1981 | 3.109               | 29.208                | 10.64   |
| 1982 | 2,520               | 26.111                | 9.65    |
| 1983 | 2.422               | 25.932                | 9.34    |

(Modified from EIA, Monthly Energy Review, March 1984)

Table 2-4 CONSUMPTION OF COAL BY RESIDENTIAL AND COMMERCIAL SECTOR (in Quadrillion Btu's)

| Year | Coal Consumption | Total  | Percent |
|------|------------------|--------|---------|
| 1973 | 0.259            | 24.147 | 1.07    |
| 1974 | 0.260            | 23.729 | 1.10    |
| 1975 | 0.212            | 23,902 | 0.89    |
| 1976 | 0.206            | 25.020 | 0.82    |
| 1977 | 0.207            | 25.375 | 0.82    |
| 1978 | 0.215            | 26.084 | 0.82    |
| 1979 | 0.188            | 25.810 | 0.73    |
| 1980 | 0.147            | 25.654 | 0.57    |
| 1981 | 0.171            | 25.246 | 0.68    |
| 1982 | 0.189            | 25.638 | 0.74    |
| 1983 | 0.193            | 25,523 | 0.76    |

(Modified from EIA Monthly Energy Review, March 1984)

#### 2.1.2 Geographic Markets

Geographic markets for coal radiate from historic centers of production. Concurrent surges in coal consumption by utilities and expansion of the geographic market for coal resulted from implementation of unit trains for coal delivery. The limit of a geographic market is set by the lowest-delivered cost coal. If transportation factors are equal the low cost producers set the floor or base price for coal. Geographic markets are defined by product quality and the availability of substitutes. The ability to discriminate among coals on a delivered equivalent cost basis is the arbiter of limit on the geographic market. Coal has a relatively low value per unit volume compared with other bulk goods. Low transport rates benefit market interpenetration.

Geographic markets change over time and may contain sub-markets for specialty coal or different coal products. For example, in 1978 Colorado steam coal was present in 11 states. However, in 1983 only seven states used Colorado steam coal. Table 2-5 shows the geographic change in Colorado coal product markets.

Listings of states within each market region consuming Colorado coal are presented in Sections 3.3.1 to 3.3.5.

| Coal<br>Product                           | 1978               | <u>1979</u>        | 1980               | <u>1981</u>       | 1982               | 1983              |
|-------------------------------------------|--------------------|--------------------|--------------------|-------------------|--------------------|-------------------|
| Steam<br>Met<br>Industrial<br>Residential | 11<br>5<br>14<br>5 | 10<br>4<br>12<br>6 | 11<br>4<br>12<br>8 | 9<br>4<br>12<br>5 | 11<br>4<br>14<br>5 | 7<br>2<br>15<br>3 |
| Total                                     | 35                 | 32                 | 35                 | 30                | 34                 | 27                |

#### TABLE 2-5 STATE GEOGRAPHIC MARKETS OF COLORADO COAL

#### 2.2 Transportation

#### 2.2.1 Railroads

Long-distance movement of coal is achieved via rail transport within the existing transportation infrastructure. The advent of unit trains in the early 1960's served to increase the market area of western coal. Unit trains usually consist of 100 100-ton coal cars dedicated to one mine and one customer. The number of unit trains required is determined by the distance between buyer and seller, required production, on-site storage and train velocity.

Mines unable to meet production requirements for unit train use are allocated coal cars at the single car rate which often is 10 to 15 percent higher than unit train rates (King, personal commun., 1984). Small mines are at a disadvantage in entering an extra-regional coal product market unless the coal has an intrinsic value above the increased cost due to higher rail transport charges.

Coal transport is a significant revenue generator for the railroads and naturally seek to continue this service despite competition. The railroad industry enjoys significant barriers-to-entry and is able to reduce its price in the face of competition. The monopoly power of railroads in coal transport is reduced, as is price, given competition from slurry pipelines. 2.2.2 Slurry Pipelines

Slurry pipelines threaten a major source of revenue and railroad marketshare of bulk coal transport. It is not surprising that great efforts are expended by the railroads to delay or quash potential slurry pipelines.

Slurry pipelines have several advantages:

- . Economy of scale
- . Capital intensive
- . Continuous operation

Disadvantages are:

- Scale of operation requires large consumer or consumer group
- . Long construction lead time
- . Requires right-of-way access
- . Slurry media may require rights acquisition

Slurry media may be water, liquid carbon dioxide, methanol, ethanol or oil; in proper quantities all may be combusted directly with coal without separation.

#### 2.3 Interfuel Substitutability

The physical character of the most common fossil fuels, coal and petroleum, greatly influences their use and desirability. Petroleum exists in either a fluid or gas phase. Extraction takes place from a fixed location and pressure differences move the substance to the well(s) for distribution. On the other hand, coal is a fixed solid and extraction must move with production.

The growth of coal and petroleum consumption was similar from the latter part of the nineteenth century until about 1920. Oil and gas production doubled from 1918 to 1930. Coal production fell from 579 million tons in 1918 to 467 million tons in 1930. The value of petroleum was artifically low and remained so due to regulation and the rule of capture. In the early part of the twentieth century the coal industry served roughly an equal marketshare to steel, utilities, industry, and railroad and domestic uses. Competition from oil and gas eliminated demand from railroads converting to diesel and sharply reduced demand from general industry, utilities and domestic use. The jump from coal to oil was a long-term substitution, and for reasons of convenience and sunk expenses it is unlikely to reverse, except in the utility sector.

The past disparity in price per unit of heat value was sufficient to move the marketshare of energy production in the direction of petroleum. Advanced petroleum depletion resulting from regulated under-pricing and over-production reversed the relative cost advantage in favor of coal. Regulation and tax laws from the 1950's through 1976 created disincentives for domestic petroleum production. As a result, foreign sources of petroleum increased marketshare. Supply shortages due to the the Arab oil embargo drove petroleum prices up and was a contributing factor to the rise in coal prices.

At the higher price for both coal and petroleum, production and exploration were greatly stimulated. Currently, there is an over-supply of both coal and

petroleum, and prices are falling. Since the incentive for fuel-switching in boilers was destroyed by the large price advantage of petroleum, domestic coal cannot substitute directly for petroleum.

Reduced oil prices are unlikely to affect growth in coal demand in the United States. In Europe due to more advanced depletion and higher mining costs, lower oil prices may tend to decrease coal consumption in favor of oil. In turn, this may reduce the market for U.S. coal exports. Lower oil prices are temporary and will increase as depletion of current producing wells increases cost. The long-term trend is to reduce petroleum consumption and over-supply of oil will be met with reduced prices regardless of OPEC desires. A lower benchmark price for oil should have little effect on coal prices or demand for coal in the United States (Perry, 1983).

The competitive front between coal and oil is relatively narrow (Department of Justice, 1978). Coal and oil would be closer competitors if coal-generated electricity were substituted for petroleum. For instance, if electric cars increase in numbers or synfuels from coal become economic then coal would compete with petroleum, although still only indirectly. Clearly, the main application for coal is in electrical generation, yet relatively few boilers are capable of switching from coal to oil or vice-versa.

#### 2.3.1 Utilities

In the short run, potential and present users of coal are constrained by existing equipment. Current users of coal-only boilers must buy coal at the current price. In the short run, coal and nuclear power are substitutable only in the dispatch of generator load. However, the cost of externalties in the nuclear industry may soon overprice nuclear energy. Examples of nuclear power externalties are:

- . Subsidized cost of fuel
- . Cost of hazardous waste disposal
- . Retirement of irradiated plants
- Politics of radioactivity

Coal presents externalties through sulfur and particulate emissions. Unlike nuclear power, coal is a known substance with a long history of use in application. Coal is not involved with the politics of radiation and the fuel cost is the real cost paid by the user. Furthermore, coal plants are retired on the basis of economics and may be returned to service if required. Nuclear plants have a limited service life and become too irradiated for service after a period of time and are thereafter unusable liabilities to the owner.

In the long run, potential coal users are not constrained by existing equipment. Time, in the long-run, allows a broader selection of fuels. The system chosen will be that which yields the lowest cost over the lifetime of the project. In the decision between coal and nuclear power the cost factors are not just the delivered cost of fuel, but capital costs, construction time and weighting of externalties.

Currently, coal and nuclear power compete in the area of new baseload power plants. Owing to reduced energy demand and high capital requirements, construction of new power plants is down. Utilities may defer new construction, defer retirement of old facilities or reduce reserve capacity. Therefore, the purchasers' decision on the relative demand for coal versus nuclear power will not be known for some time.

In response to the economic downturn ending in 1983 and changes in consumer demand, utilities are slowing expansion plans and conversion of plants from petroleum to coal. Competition among electric producers is holding the relative cost of electricity down and initiating innovation. For example, Colorado-Ute sold a new generating unit to an investment group for leaseback (Rocky Mountain News, 1984).

The coal versus nuclear power decision may shift to coal as problems mount for nuclear power in the United States and technology improves the position of coal. Atmospheric fluidized-bed combustion (AFBC) units permit coal generators to be used as peaking devices. In addition, AFBC is well-suited to co-production of steam for district heating and electrical requirements. The passage of time has not similarly aided the technology or learning curve associated with nuclear power. However, the nuclear power industry appears more successful in other countries.

2.3.2 Steel

Steelmakers are the second largest users of coal. Metallurgical coal displays specific desirable properties in steelmaking and is obtained at a higher cost due to mining conditions than is steam coal. Coke is substitutable as a supply of heat so it is possible for steelmakers to blend met coal with lower quality coals to reduce the unit price and still meet the technical requirements. There is no current, cost-effective substitute for met coal in steelmaking.

The American steel industry is attempting consolidation to better compete with imports. Mergers increase productivity and reduce costs by abandoning antiquated plants and reinvesting in well-located and more modern facilities. Two steelmakers with coal-holdings in Colorado announced changes in corporate structure. U. S. Steel shut down several facilities, some in Utah, in late 1983, but will retain capacity in the west. Its coal requirements will be drawn from Colorado. On December 27, 1983 CF&I announced it was permanently closing four blast furnaces, two basic oxygen furnaces and coke ovens, according to the Rocky Mountain News.

2.3.3 Other Industrial Users

Applications of coal in other industries include:

Process steam
Electricity
Space heat

The industries comprising these alternative users of coal are:

Chemicals
Paper
Stone, refractory
Primary metals
Food

At the smaller scale generally inherent in these industries oil and coal are substitutable. Petroleum furnaces require less capital and storage and handling is simpler than with coal. Coal, however, retains a significant cost advantage in terms of dollars per unit of heat value. Industrial buyers tend to purchase coal on the spot market which is generally at a higher price than the contract rate.

#### SECTION 3

#### 3.0 ANALYSIS OF THE COLORADO COAL INDUSTRY

Colorado coal competes in specific product and geographic markets. These markets determine which coals are desirable, and therefore, the extent of mining which will occur. Markets are dynamic, changing with changing economic perceptions about relative prices of energy. Sunk costs prevent immediate fuel-switching among competing fuels when prices change.

Changes in demand force changes in product quantity and quality. In other words, as demand changes, different types of coal are required to satisfy this change. As the supply increases, cost is driven down, however, in a natural resource such as coal only a specific amount may be consumed regardless of price. Therefore, price decreases to a level commensurate with demand, and over-supply is rectified by companies scaling back, and either temporarily or permanently leaving the market.

Changing demand, over-supply and price reductions dictate that certain coals are favored over others. Colorado has a tremendous diversity of coal rank and attributes of coal. Changing demand may be met by shifting production from one coal basin to another, from met coal to steam coal, from subbituminous to low volatile bituminous. However, none of these shifts are smooth transitions. Abrupt changes in demand for a coal product may shutdown an important economic contribution to a region's economy. The new product demanded may not be available in Colorado since it is not possible to react swiftly in the short-term or mid-term. The long-term allows the new demand product be satisfied with new coal mines or new facilities.

When market changes occur the existing microeconomy of coal mines is often unable to meet the goal. Consumers find new sources of better or less expensive coal. Loss of marketshare is not necessarily a permanent result of changing demand. Any time a market shift takes place, a lag time in adjustment will occur. If a market correction is possible it will occur within the long-term time-frame and compete with the new market supplies. Colorado competes most with Wyoming in the steam coal product market. Wyoming produces mainly one form of coal, low-rank subbituminous coal. Rank of Colorado coal is, in general, much higher, however mining costs are significantly higher since mining conditions differ greatly. The price advantage enjoyed by Wyoming remains significant even when comparing equal heating value contents.

Increasing production in a coal region is possible, however this alternative may be constrained by land availability, leasing rights or in-mine economies-of-scale. Falling demand for a coal product may essentially omit an entire region from the coal market. Superior products, and the mix of relative coal desirability is separable by product quality and distance. Colorado's coal regions contribute to a diversified mix of coal products by virtue of variable geologic history, coalification processes and topography. Table 3-1 shows production statistics for 1982 and an estimate of 1983 production by coal region. Overall 1983 production decreased 10 percent from 1982 levels. Changes in production of individual coal regions are diagnostic of the value placed on coal by consumers.

The largest increase was experienced in the Denver Coal Region, due entirely to the demand requirements of one captive mine. The largest decrease was observed in the Raton Mesa Coal Region where slacking demand for met coal forced shutdown of several relatively large mines. In terms of production, the largest loss was in the Green River Coal Region, where nearly one million tons less was produced in 1983 than 1982. The Green River and Uinta Coal Regions account for about 90 percent of Colorado coal production. Loss of marketshare of coals from these regions impact overall Colorado production most significantly.

#### TABLE 3-1 COAL PRODUCTION BY COLORADO COAL REGION (Short Tons)

| Coal<br>Region                                                                             | 1982                                                                          | 1983 (est.)                                                                   | Percent<br>Change                                                |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------|
| Canon City<br>Denver<br>Green River<br>North Park<br>Raton Mesa<br>San Juan River<br>Uinta | 701,458<br>135,651<br>8,919,572<br>191,449<br>321,694<br>441,782<br>7,768,598 | 850,000<br>176,000<br>7,956,000<br>119,000<br>126,000<br>359,000<br>7,050,000 | 21.18<br>29.74<br>-10.80<br>-37.84<br>-60.83<br>-18.74<br>- 9.25 |
| TOTAL                                                                                      | 18,480,204                                                                    | 16,636,000                                                                    | - 9.98                                                           |

Product markets change with time, and this fact is reflected in shifting of production from region to region. The first markets for Colorado coal were geographic. The Denver Coal Region was developed to feed a growing metropolitan area. Product markets developed later, the Raton Mesa Coal Region specialized in met coal and high heat value coals. Colorado developed around coal production and drew transportation infrastructure to these areas.

#### 3.1 Coal Characteristics and Resources

Colorado coal production is from rocks of Upper Cretaceous to Eocene age. Upper Cretaceous coals formed in deltas along an epeiric sea bordered in turn by highlands. Sedimentary processes dominated in controlling the geometry of coal bodies. Upper Cretaceous delta-plain and back-barrier coals tend to be elongate with the depositional strike and are occasionally disrupted by crevasse splays, wants or distributary channels. In contrast, Paleocene and Eocene coals were influenced by a fresh-water regime in tectonically controlled intermontane basins.

Heating value and sulfur contents usually constitute the main user-interest in coal as a commodity. Heating values of Colorado coal vary widely, in part due to locally high geothermal gradients related to igneous activity. Differential subsidence and overburden accumulation also influence present, observed heating values. Most steam coal heating values range from 10,000 to 13,600 Btu/lb; met coal heating values range from 12,070 to about 14,000 Btu/lb, on an as-received basis (Ladwig, 1983). Most coals contain less than 0.8 percent sulfur.

Geologic and geographic considerations allow differentiation of coal regions within the state. Coal regions are listed in order of decreasing cumulative production through January 1, 1983. Coal quality data are from Colorado Geological Survey publications. The following coal regions follow nomenclature of the Colorado Geological Survey:

#### 3.1.1 Raton Mesa Coal Region

Moisture (%)

Ash (%)

The Raton Mesa Coal Region is defined by the base of the Upper Cretaceous Vermejo Formation. Locally upgraded by igneous intrusions, the coals in the Vermejo and Raton Formations are generally of coking quality. Of the two coal fields, Trinidad and Walsenburg, the Vermejo Formation of the Trinidad is the most significant in terms of production.

Coal quality data for the Raton Mesa Coal Region are summarized as follows:

#### TRINIDAD FIELD

Raton Formation Vermejo Formation 1.8 - 4.5 1.6 - 7.5 32.2 - 39.1 Volatile Matter (%) 34.4 - 40.3 5.3 - 16.4 7.7 - 21.8

| Sulfur (%)<br>Heating Value (Btu/lb)<br>Ash Fusion Temp. (°F)<br>Free-Swelling Index                                                   | 0 - 8.5                                                                  | $\begin{array}{r} 0.5 & - & 1.0 \\ 0.11,430 & - & 13,510 \\ 2,290 & - & 2,910 \\ 0 & - & 6.5 \end{array}$ |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|                                                                                                                                        | WALSENBURG FIELD<br>Raton Formation                                      | Vermejo Formation                                                                                         |
| Moisture (%)<br>Volatile Matter (%)<br>Ash (%)<br>Sulfur (%)<br>Heating Value (Btu/lb)<br>Ash Fusion Temp. (°F)<br>Free Swelling Index | 2.5 - 4.2 $5.3 - 13.5$ $0.4 - 1.0$ $12,660 - 13,340$ $2,230 - 2,730$ $0$ | 5.3 - 10.2 $36.4 - 38.0$ $7.2 - 14.4$ $0.4 - 1.3$ $11,050 - 12,880$ $2,210 - 2,840$ $0$                   |

#### 3.1.2 Green River Coal Region

The Green River Coal Region is defined by the base of the Upper Cretaceous Iles Formation. The two coal-bearing units, Iles and Williams Fork Formations, represent a stratigraphic thickness of about 3,400 feet. Younger coals in the Lance, Fort Union and Wasatch Formations are preserved towards the depocenter, however, they are not mined at present (Murray, 1978).

Coal quality data are presented for the "Middle Coal Group" of the Williams Fork Formation and the Iles Formation.

#### YAMPA FIELD

Williams Fork Formation Iles Formation

| Moisture (%)           | 6.4 - 11.8     | 6.3 - 12.2      |
|------------------------|----------------|-----------------|
| Volatile Matter (%)    | 33.8 - 39.0    |                 |
| Ash (%)                | 3.0 - 20.2     | 4.3 - 11.3      |
| Sulfur (%)             | 0.3 - 0.9      | 0.3 - 0.9       |
| Heating Value (Btu/lb) | 9,871 - 12,440 | 11,090 - 12,560 |
| Ash Fusion Temp. (°F)  | 2,140 - 2,890  | 2,250 - 2,780   |
| Free Swelling Index    | 0 - 0.5        |                 |

3.1.3 Denver Coal Region

The Denver Coal Region consists of two separate coal-bearing sub-basins, the Denver Basin and the Cheyenne Basin (Ladwig, 1983). The Denver Basin is mapped at the base of the Upper Cretaceous Laramie Formation. The Laramie Formation coal zone is about 50 to 275 feet thick.

Coal quality for the Denver Coal Region is summarized as follows:

BOULDER-WELD FIELD

Laramie Formation

| Moisture (%)                                    | 13.7  | - | 29.1   |
|-------------------------------------------------|-------|---|--------|
| Volatile Matter (%)                             | 27.3  | - | 43.6   |
| Ash (%)                                         | 3.5   | - | 12.7   |
| Sulfur (%)                                      | 0.2   | - | 0.9    |
| Heating Value (Btu/lb)<br>Ash Fusion Temp. (°F) | 8,250 | - | 10,810 |
| Ash Fušion Temp. (°F)                           | 1,990 | - | 2,470  |
| Free Swelling Index                             | 0     |   |        |

#### COLORADO SPRINGS FIELD

Laramie Formation

| Moisture (%)           | 19.0  | - 26.2  |
|------------------------|-------|---------|
| Volatile Matter (%)    | 31.4  | - 45.1  |
| Ash (%)                | 5.6   | - 20.8  |
| Sulfur (%)             | 0.3 . | - 0.7   |
| Heating Value (Btu/lb) | 8,440 | - 9,280 |
| Ash Fusion Temp. (°F)  | 2,150 | - 2,470 |
| Free Swelling Index    | 0     |         |

#### SOUTHEAST/SOUTH CENTRAL FIELD

Denver Formation

Laramie Formation

| Moisture (%)           | 26.4 - 39.6   | 33.1 - 35.0   |
|------------------------|---------------|---------------|
| Volatile Matter (%)    | 19.3 - 42.7   | 30.8 - 44.2   |
| Ash (%)                | 9.8 - 44.6    | 7.8 - 15.7    |
| Sulfur (%)             | 0.2 - 0.6     | 0.4 - 1.1     |
| Heating Value (Btu/lb) | 3,636 - 6,803 | 6,150 - 7,340 |
| Ash Fusion Temp. (°F)  | 2,480 - 2,530 | 2,140 - 2,400 |
| Free Swelling Index    | 0             | 0             |

3.1.4 Uinta Coal Region

The Uinta Coal Region, located in west-central Colorado, is defined by the base of the Mount Garfield Formation. The Mount Garfield Formation is time-equivalent to the Iles Formation. The Williams Fork and Iles Formations are the coal-bearing formations. Most coals range from 2 to 15 feet in thickness. Locally, high geothermal gradients upgraded coals to coking quality and through anthracite to the graphite stage.

Coal quality data of the Uinta Coal Region are presented by field as follows:

BOOK CLIFFS FIELD

Iles Formation

| Moisture (%)           | 3.3 - 14.0     |
|------------------------|----------------|
| Volatile Matter (%)    | 29.8 - 35.4    |
| Ash (%)                | 4.9 - 23.3     |
| Sulfur (%)             | 0.4 - 1.7      |
| Heating Value (Btu/lb) | 9,833 - 13,560 |
| Ash Fusion Temp. (°F)  | 2,130 - 2,960  |
| Free Swelling Index    | 0 - 1.0        |

#### CARBONDALE

Williams Fork Formation

| Moisture (%)           | 0.8 - 4.0       |
|------------------------|-----------------|
| Volatile Matter (%)    | 21.8 - 39.3     |
| Ash (%)                | 3.4 - 6.7       |
| Sulfur (%)             | 0.4 - 1.5       |
| Heating Value (Btu/lb) | 12,609 - 15,088 |
| Ash Fusion Temp. (°F)  | 2,180 - 2,455   |
| Free Swelling Index    | 1 - 9           |

#### CRESTED BUTTE FIELD

Williams Fork Formation

| Moisture (%)           | 2.5 - 13.3      |
|------------------------|-----------------|
| Volatile Matter (%)    |                 |
| Ash (%)                | 3.2 - 9.1       |
| Sulfur (%)             | 0.4 - 1.9       |
| Heating Value (Btu/lb) | 11,400 - 14,170 |
| Ash Fusion (°F)        | 2,130 - 2,480   |
| Free Swelling Index    | 0               |

#### DANFORTH HILLS FIELD

Iles Formation Williams Fork Fm.

| Moisture (%)           | 9.2 - 13.4      | 8.9 - 15.5      |
|------------------------|-----------------|-----------------|
| Volatile Matter (%)    |                 |                 |
| Ash (%)                | 3.7 - 10.0      | 2.2 - 9.6       |
| Sulfur (%)             | 0.4 - 0.6       | 0.3 - 1.4       |
| Heating Value (Btu/lb) | 11,200 - 11,970 | 10,140 - 11,790 |
| Ash Fusion Temp. (°F)  | 2,210 - 2,990   | 2,210 - 2,910   |
| Free Swelling Index    |                 |                 |

#### GRAND HOGBACK FIELD

#### Williams Fork Formation

| Moisture (%)           | 4.0 -    | 4.8   |
|------------------------|----------|-------|
| Volatile Matter (%)    | 37.2 -   | 39.8  |
| Ash (%)                | 6.1 -    | 10.4  |
| Sulfur (%)             | 0.6 -    | 0.7   |
| Heating Value (Btu/lb) | 12,060 - |       |
| Ash Fusion Temp. (°F)  | 2,230 -  | 2,910 |
| Free Swelling Index    | 1.0 -    | 1.5   |

#### GRAND MESA FIELD

#### Iles Formation

| Moisture (%)           | 3.1 -   | 19.5   |
|------------------------|---------|--------|
| Volatile Matter (%)    | 30.4 -  | 35.0   |
| Ash (%)                | 2.1 -   | 17.9   |
| Sulfur (%)             | 0.5 -   | 2.2    |
| Heating Value (Btu/lb) | 8,298 - | 13,489 |
| Ash Fusion Temp (°F)   | 2,060 - | 2,970  |
| Free Swelling Index    |         | -      |

#### LOWER WHITE RIVER FIELD

#### Williams Fork Formation

| Moisture (%)           | 11.2 - 14.1    |
|------------------------|----------------|
| Volatile Matter (%)    |                |
| Ash (%)                | 4.4 - 8.5      |
| Sulfur (%)             | 0.4 - 0.5      |
| Heating Value (Btu/lb) | 10,800 - 11230 |
| Ash Fusion Temp. (°F)  | 2,060 - 2,910  |
| Free Swelling Index    | 0 - 1.5        |
|                        | 3-6            |

#### SOMERSET FIELD

Williams Fork Formation

| Moisture (%)           | 3.2    | - | 13.6   |
|------------------------|--------|---|--------|
| Volatile Matter (%)    | 35.3   | - | 37.7   |
| Ash (%)                | 3.2    | - | 11.4   |
| Sulfur (%)             | 0.5    | - | 0.8    |
| Heating Value (Btu/lb) | 10,040 | - | 13,453 |
| Ash Fusion Temp. (°F)  | 2,145  | - | 2,810  |
| Free Swelling Index    | 0      | - | 0.3    |

3.1.5 Canon City Coal Region

The Canon City Coal Region is geologically similar to the Raton Mesa Coal Region. The Canon City Coal Region is defined on a map by the base of the Upper Cretaceous Vermejo Formation.

Coal quality analyses for the Canon City Coal Region are presented as follows:

Vermejo Formation

| Moisture (%)           | 5.4    | - 1 | 1.9   |
|------------------------|--------|-----|-------|
| Volatile Matter (%)    | 31.4   | - 4 | 2.9   |
| Ash (%)                | 4.6    | - 1 | 4.8   |
| Sulfur (%)             | 0.3    | - 1 | .7    |
| Heating Value (Btu/lb) | 10,400 | - 1 | 1,390 |
| Ash Fusion Temp. (°F)  | 2,030  | - 2 | ,720  |
| Free Swelling Index    |        |     | -     |

3.1.6 San Juan River Coal Region

The San Juan River Coal Region is mapped at the base of the Dakota Formation. Coal-bearing zones are the Fruitland, Menefee and Dakota Formations. High geothermal gradients locally upgrade coals to coking quality.

Coal quality analyses for the San Juan River Coal region are as follows:

DURANGO FIELD

Fruitland Formation Menefee Formation

| Moisture (%)           | 0.9 - 2.3       | 1.6 - 10.7      |
|------------------------|-----------------|-----------------|
| Volatile Matter (%)    | 20.8 - 23.6     | 36.2 - 42.1     |
| Ash (%)                | 19.5 - 26.6     | 3.4 - 16.6      |
| Sulfur (%)             | 0.7 - 0.8       | 0.6 - 1.3       |
| Heating Value (Btu/lb) | 11,230 - 12,140 | 10,860 - 14,700 |
| Ash Fusion Temp.       |                 | 2,020 - 3,000   |
| Free Swelling Index    |                 | 0 - 5.5         |

#### NUCLA FIELD

Dakota Formation

| Moisture (%)           | 2.5    | - | 13.5   |
|------------------------|--------|---|--------|
| Volatile Matter (%)    | 32.6   | - | 36.1   |
| Ash (%)                | 6.1    | - | 12.8   |
| Sulfur (%)             | 0.5    |   |        |
| Heating Value (Btu/lb) | 10,010 | - | 13,380 |
| Ash Fusion Temp. (°F)  | 2,620  | - | 2,910  |
| Free Swelling Index    | 0      | - | 1.5    |

TONGUE MESA FIELD

Fruitland Formation

| Moisture (%)           | 14.2 - 16.0    |
|------------------------|----------------|
| Volatile Matter (%)    | 36.0 - 47.3    |
| Ash (%)                | 6.7 - 8.4      |
| Sulfur (%)             | 0.5 - 0.9      |
| Heating Value (Btu/lb) | 9,350 - 10,200 |
| Ash Fusion Temp. (°F)  | 2,450 - 2,480  |
| Free Swelling Index    | 0              |

3.1.7 North Park Coal Region

Only North Park is host to any significant, current or historical coal production. The North Park Coal Region is mapped at the base of the Paleocene Coalmont Formation, although coals may intertongue with the underlying Upper Cretaceous Pierre Shale. The South Park Coal Region is stratigraphically similar to the Denver Basin and is mapped at the base of the Laramie Formation.

Coal quality data for the North Park Coal Region are summarized as follows:

#### COALMONT FIELD

#### **Coalmont Formation**

| Moisture (%)           | 14.5 - 20.2   |
|------------------------|---------------|
| Volatile Matter (%)    | 29.3 - 37.3   |
| Ash (%)                | 5.5 - 13.1    |
| Sulfur (%)             | 0.6 - 1.0     |
| Heating Value (Btu/lb) | 6,520 - 9,570 |
| Ash Fusion Temp. (°F)  | 2,060 - 2,570 |
| Free Swelling Index    | 0             |

McCALLUM ANTICLINE FIELD

#### Coalmont Formation

| Moisture (%)           | 12.0 -  | 16.1     |
|------------------------|---------|----------|
| Volatile Matter (%)    | 27.4 -  | • 37.3   |
| Ash (%)                | 2.1 -   | 19.2     |
| Sulfur (%)             | +       | - 0.3    |
| Heating Value (Btu/lb) | 8,580 - | - 11,280 |
| Ash Fusion Temp. (°F)  | 2,040 - | 2,680    |
| Free Swelling Index    | 0       |          |

3.2 Colorado Supply Product

## 3.2.1 Product Quality

Colorado coal regions produce coals of variable quality in varying amounts. Table 3-2 shows the overall production and selected coal quality characteristics from mines reporting coal sales distributions to the Colorado Geological Survey for 1981 and 1983. Differences for year-end figures are due to incomplete reporting (Rushworth, Kelso and Ladwig, 1984). Coal production declined about 10 percent from 1982 to 1983. In the same time period the heating value of Colorado coal fell slightly from 11,139 to 10,980 Btu/lb., or 1.43 percent. No change was observed in sulfur content in this time period. Changes in coal quality are due to the changes of individual mines increasing or decreasing production to meet the specific demand for their mine product.

Table 3-3 lists changes in coal quality data by coal region and mining method. In the aggregate, for both years analyzed, higher quality coal is exported from Colorado than is retained for in-state use. This is expected since high value coal can travel further and compete in a greater array of markets than can lower value coal.

In 1981, the weighted average heating value of coal sold in-state was 10,912 Btu/lb. Coal exported out-of-state had a weighted average heating value of 11,388 Btu/lb. Underground mines yielded coal with a weighted average heating value of 12,122 Btu/lb while exported coal showed a heating value of 12,235 Btu/lb and coal used in-state showed a value of 12,122 Btu/lb. Surface-mined coal was characterized by an aggregate heating value of 10,775 Btu/lb. In-state coal heating value was 10,738 Btu/lb and 10,834 Btu/lb for coal exported out-of-state.

In this analysis, 1983 coal production was characterized by a weighted average heating value of 10,980 Btu/lb. Underground mines produced coal with an overall heating value of 11,588 Btu/lb; in-state coal was 11,100 Btu/lb and export coal was 11,759 Btu/lb. Surface-mined coal consumed in-state averaged 10,519 Btu/lb, export coal was 10,893 Btu/lb yielding an overall weighted average of 10,670 Btu/lb. In general, Colorado coal mined by underground methods is about 10 percent higher in heating value than surface-mined coal.

Table 3-4 shows the change in marketshare of underground and surface-mined coal with respect to import-export of coal and coal region. Between 1981 and 1983 underground-mined coal gained marketshare in in-state consumption versus surface-mined coal. The ratio of surface to underground-mined coal ranged from 7:1 in 1981 to 4.5:1 in 1983 for in-state coal sales.

The out-of-state coal product and geographic market noted changes in marketshare as well. Underground-mined coal gained nearly a 10 percent increase in marketshare from 1981 to 1983. Surface-mined coal declined in marketshare almost 13 percent. The ratio of surface to underground-mined coal exported out of state was 1.5:1 in 1981 and almost 1:1 in 1983. Table 3-5 shows these data. Table 3-6 lists coal production and distribution by region and percent of total.

| COAL REGION        | 1981 TOTAL<br>PRODUCTION | 1983 ESTIMATED<br>Production | PERCENT CHANGE | 1981<br>BTU/LB | 1983<br>BTU/LB | PERCENT<br>Change | 1981<br>Sulfur | 1983<br>Sulfur | PERCENT<br>Change |
|--------------------|--------------------------|------------------------------|----------------|----------------|----------------|-------------------|----------------|----------------|-------------------|
| CANON CITY         | 278,027                  | 842,300                      | 202.96         | 11,000         | 11,082         | 0.72              | 0.72           | 0.61           | -18.67            |
| DENVER             | 7,293                    | 143,000                      | 1,860.73       | 8,079          | 8,079          | 0.00              | 0.37           | 0.37           | 0.00              |
| <b>BREEN RIVER</b> | 9,635,164                | 7,956,000                    | -17.43         | 10,644         | 10,590         | -0.51             | 0.46           | 0.45           | -2.17             |
| NORTH PARK         | 523,212                  | 119,100                      | -17.24         | 10,623         | 10,037         | -5.52             | 0.29           | 0.25           | -13.79            |
| RATON MESA         | 744,926                  | 51,800                       | -93.05         | 13,094         | 13,000         | -0.72             | 0.57           | 0.70           | 22.81             |
| SAN JUAN           | 472,455                  | 359,000                      | -24.01         | 13,074         | 13,017         | -0.44             | 0.84           | 0.84           | 0.00              |
| UINTA              | 6,597,433                | 6,834,900                    | 3.60           | 11,552         | 11,377         | -1.43             | 0.47           | 0.47           | 0.0               |
| TOTAL              | 18.258.510               | 16.306.100                   | -10.69         | 11.139         | 10.980         | -1.43             | 0.47           | 0.47           | 0.00              |

| -                 |
|-------------------|
| 6                 |
| RE610             |
| COAL              |
| 8                 |
| B۷                |
| COAL              |
|                   |
| In                |
| RIB               |
| DISTRIBUTED       |
| <u> </u>          |
| 5                 |
| E                 |
| COAL QUALITY OF I |
| ي.                |
|                   |
| AND               |
| TION              |
| -LO               |
| PRODUCTION        |
| 3-2               |
| ų                 |
| TABL              |

| Sulfur                           | 0.60<br>1.00<br>0.61                          |                                           | 0.40<br>0.45<br>0.44                           | 0.25<br>0.25                                  | 0.70<br>0.70<br>0.70                                      | 0.84<br>0.85<br>0.85                        | 0.53<br>0.4<br>0.48                      | 0.52<br>0.45<br>0.49                           |
|----------------------------------|-----------------------------------------------|-------------------------------------------|------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------|---------------------------------------------|------------------------------------------|------------------------------------------------|
|                                  |                                               |                                           | 911                                            | 8 8                                           | 888                                                       | 29<br>30                                    | 74<br>28<br>56                           | 26<br>11                                       |
| Btu/1b                           | 11,021<br>11,000<br>11,020                    |                                           | 10,516<br>10,771<br>10,717                     | 10,018<br>10,018                              | 13,000<br>13,000<br>13,000                                | 13,529<br>13,230<br>13,274                  | 11,974<br>10,728<br>11,456               | 11, 7 <b>5</b> 9<br>10, 893<br>11, 311         |
| 1983 Out-of<br>State Production  | 323,500<br>14,500<br>338,000                  | ,                                         | 435,900<br>1,615,200<br>2,051,100              | 116,200<br>116,200                            | <b>31,800</b><br>51,800<br>51,800                         | 43,300<br>245,500<br>288,800                | 3,276,500<br>2,332,400<br>5,608,900      | 4,079,200<br>4,375,600<br>8,454,800            |
| Sulfur                           | 0.58<br>1.0<br>0.61                           | 0.37                                      | 0.41<br>0.46<br>0.46                           | 0.2                                           |                                                           | 0.84<br>0.81<br>0.81                        | 0.48<br>0.4<br>0.44                      | 0.50<br>0.46<br>0.47                           |
| Btu/1b                           | 11,134<br>11,000<br>11,125                    | 8,079<br>8,079                            | 10,571<br>10,545<br>10,547                     | 10,800<br>10,800                              |                                                           | 13,529<br>11,680<br>11,964                  | 11,286<br>10,728<br>11,020               | 11,100<br>10, <b>5</b> 19<br>10,625            |
| 1983 In-State<br>Production      | 470,500<br>33,800<br>504,300                  | 143,000<br>143,000                        | 304,000<br>5,600,900<br>5,904,900              | 2 <b>,900</b><br>2,900                        |                                                           | 10,800<br>59,400<br>70,200                  | 642,900<br>583,100<br>1,226,000          | 1,428,200<br>6,423,100<br>7,851,300            |
| Sulfur                           | 0.6<br>1.0<br>0.70                            |                                           | 0.40<br>0.46<br>0.45                           | 0.29                                          | 0.70<br>0.70                                              | 0.84<br>0.85<br>0.85                        | 0.55<br>0.48<br>0.48                     | 0.54<br>0.44<br>0.48                           |
| Btu/lb                           | 11,000<br>11,000<br>11,000                    |                                           | 10,504<br>10,650<br>10,620                     | 10 <b>,609</b><br>10,609                      | 13,000<br>13,000                                          | 13,529<br>13,230<br>13,334                  | 12,568<br>10,728<br>11,696               | 12,235<br>10,834<br>11,388                     |
| 1981 Out-of-<br>State Production | 114,190<br>38,973<br>153,163                  |                                           | 530,176<br>2,023,227<br>2,553,403              | 492,446<br>492,446                            | 65 <b>,544</b><br>65 <b>,544</b>                          | 133,450<br>247,576<br>381,026               | 2,664,328<br>2,400,945<br>5,065,273      | 3,442,144<br>5,268,711<br>8,710,855            |
| Sulfur                           | 0.6<br>0.81                                   | 0.37                                      | 0.41<br>0.46<br>0.46                           | 0.36<br>0.36                                  | 0.48<br>0.73<br>0.56                                      | 0.84<br>0.81<br>0.82                        | 0.51<br>0.4<br>0.43                      | 0.48<br>0.47<br>0.47                           |
| Btu/1b                           | 11,000<br>11,000<br>11,000                    | 8,079<br>8,079                            | 10,572<br>10,657<br>10,654                     | 10,8 <b>59</b><br>10,859                      | 13,150<br>13,002<br>13,104                                | 13,529<br>11,820<br>11,994                  | 12,178<br>10,728<br>11,078               | 12,122<br>10,738<br>10,912                     |
| 1981 In-State<br>Production      | 59,552<br>65,312<br>124,864                   | 7,293<br>7,293                            | 289,458<br>6,792,303<br>7,081,761              | 30,766<br>30,766                              | 468,705<br>210,677<br>679,382                             | 9,310<br>82,119<br>91, <b>4</b> 29          | 370,058<br>1,162,102<br>1,532,160        | 1,197,083<br>8,350,572<br>9,547,655            |
| 12                               | Canon City<br>Underground<br>Surface<br>TOTAL | Denver<br>Underground<br>Surface<br>TOTAL | Green River<br>Underground<br>Surface<br>10TAL | North Park<br>Underground<br>Surface<br>TOTAL | Raton <del>Ne</del> sa<br>Underground<br>Surface<br>101AL | San Juan<br>Underground<br>Surface<br>101AL | Uinta<br>Underground<br>Surface<br>TOTAL | GRAND TOTAL<br>Underground<br>Surface<br>TOTAL |

TABLE 3-4 PERCENT COAL DISTRIBUTION BY MINING METHOD AND COAL REGION

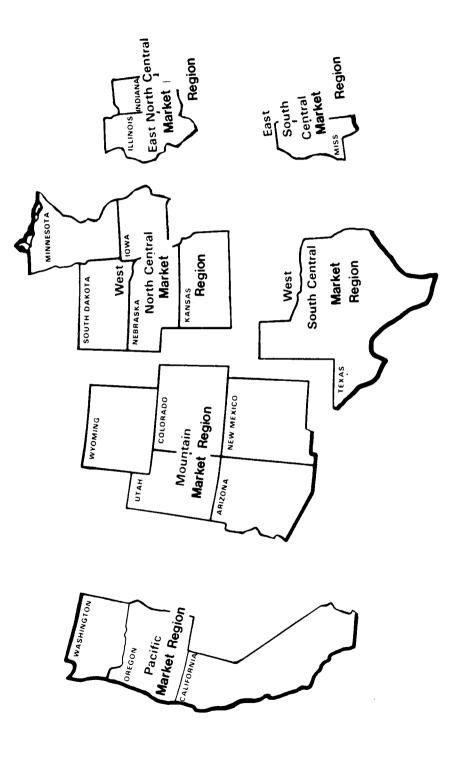
|                                                | 19                                | 81                   | 1983                                                                      |
|------------------------------------------------|-----------------------------------|----------------------|---------------------------------------------------------------------------|
| COAL REGION                                    | In-<br>State                      | Out-of-<br>State     | In- Out-of-<br>State State                                                |
| Canon City<br>Underground<br>Surface<br>Total  | 21.4<br>23.5<br>44.9              | 41.1<br>14.0<br>55.1 | $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                     |
| Denver<br>Underground<br>Surface<br>Total      | 100.0<br>100.0                    | 0                    | $   \frac{100.0}{100.0}   \frac{0}{0} $                                   |
| Green River<br>Underground<br>Surface<br>Total | 3.0<br>70.5<br>73.5               | 5.5<br>21.0<br>26.5  | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                      |
| North Park<br>Underground<br>Surface<br>Total  | <u>5.9</u><br>5.9                 | $\frac{94.1}{94.1}$  | $\frac{2.4}{2.4}$ $\frac{97.6}{97.6}$                                     |
| Raton Mesa<br>Underground<br>Surface<br>Total  | 62.9<br>28.3<br>91.2              | 0<br>8.8<br>8.8      | $\begin{array}{ccc} 0 & 0 \\ 0 & 100.0 \\ \hline 0 & 100.0 \end{array}$   |
| San Juan<br>Underground<br>Surface<br>Total    | 2.0<br><u>17.4</u><br><u>19.4</u> | 28.2<br>52.4<br>80.6 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                     |
| Uinta<br>Underground<br>Surface<br>Total       | 5.6<br><u>17.6</u><br>23.2        | 40.4<br>36.4<br>76.8 | $\begin{array}{cccc} 9.4 & 47.9 \\ 8.5 & 34.1 \\ 17.9 & 82.0 \end{array}$ |

| 5 MARKE | TSHARE UF                      | DISIKIBUIED         | TABLE 3-5 MARKETSHARE UP DISINIBULED CULUMMUU CONF INCOULING TO THE |                                         |                   |                                      |                     |                                      |                     | DEDFENT |
|---------|--------------------------------|---------------------|---------------------------------------------------------------------|-----------------------------------------|-------------------|--------------------------------------|---------------------|--------------------------------------|---------------------|---------|
| 8       | 1981<br>Production<br>In-State | PERCENT<br>OF TOTAL | PRODU<br>IN-                                                        | 1983 PERCENT<br>CTION DF TOTAL<br>STATE | PERCENT<br>Change | 1981<br>Production (<br>Out-OF-State | PERCENT<br>DF TOTAL | 1985<br>Production (<br>Out-of-state | PERLENI<br>OF TOTAL | CHANGE  |
|         | 1.197.083                      | <b>6.</b> 56        | 1,428,200                                                           |                                         | 8.76 19.31        | 3,442,144                            | 18.85               | 4,079,200                            | 25.02               | 18.51   |
|         | 8. 350. 572                    | 42.74               | 6,423,100                                                           | 39.39                                   | -23.08            | 5,268,711                            | 28.86               | 4,375,600                            | 26.83               | -16.95  |
|         | 9,547,655                      |                     |                                                                     |                                         | 48.15 -17.77      | 8,710,855                            | 47.11               | 8,454,800                            | 51.85               | - 2.94  |

LE 3-5 MARKETSHARE OF DISTRIBUTED COLORADO COAL PRODUCTION BY MINING METHOD

9

| TABLE 3-6 MARKE | MARKETSHARE OF IN-ST           | ATE AND OUT-OF                 | OF IN-STATE AND OUT-DF-STATE COAL PRODUCTION AND DISTRIBUTION BY COAL REGION, 1981 AND 1983 | ODUCTION AND                    | DISTRIBUTION B                     | Y COAL REGION,                     | 1981 AND 1983                        |                                      |  |
|-----------------|--------------------------------|--------------------------------|---------------------------------------------------------------------------------------------|---------------------------------|------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|--|
| COAL REGION     | 1981<br>Production<br>IN-State | 1983<br>Production<br>IN-STATE | 1981<br>IN-STATE<br>MARKETSHARE                                                             | 1983<br>IN-STATE<br>MARKETSHARE | 1981<br>Production<br>Out-of-state | 1983<br>Production<br>Out-of-State | 1981 OUT-<br>DF-State<br>Marketshare | 1983 OUT-<br>OF-STATE<br>MARKETSHARE |  |
| Canon City      | 124,864                        | 504,300                        | 1.31                                                                                        | <b>6.4</b> 2                    | 153,163                            | 33 <b>8,000</b>                    | 1.76                                 | 4,00                                 |  |
| Denver          | 7,293                          | 143,000                        | 0.08                                                                                        | 1.82                            |                                    |                                    |                                      |                                      |  |
| Sreen River     | 7,081,761                      | 5,904,900                      | 74.17                                                                                       | 75.21                           | 2,553,403                          | 2,051,100                          | 29.31                                | 24.26                                |  |
| North Park      | 30,766                         | 2,900                          | 0.32                                                                                        | 0.04                            | 492,446                            | 116,200                            | 5.65                                 | 1.37                                 |  |
| Raton Mesa      | 679,382                        |                                | 7.12                                                                                        |                                 | 65,544                             | 51,800                             | 0.75                                 | 0.61                                 |  |
| San Juan        | 91,429                         | 70,200                         | 0.96                                                                                        | 0.89                            | 381,026                            | 288,800                            | 4.37                                 | 3.42                                 |  |
| Uinta           | 1,532,160                      | 1,226,000                      | 16.05                                                                                       | 15.62                           | 5,0 <b>65,2</b> 73                 | 5,608,900                          | 58.15                                | 66.34                                |  |
| TOTAL           | 9,547,655                      | 7,851,300                      | 100.00                                                                                      | 100.00                          | 8,710,855                          | 8,454,800                          | <b>100.</b> 00                       | 100.00                               |  |


### 3.3 Colorado Demand Product

Demand for Colorado coal is down in three out of four product markets. Steam, met and residential applications show declines, and only industrial coal from Colorado exhibits strength in the marketplace. The geographic market encompasses fewer than 20 states from the Pacific Northwest to the Gulf Coast. Coal consumption is influenced locally by climate conditions, industry and rate of changeover from oil and gas to coal conversions.

Geographic markets are states which purchase Colorado coal. The basis for geographic market definitions are census regions used for data collection purposes by the Federal government. In turn, Census Regions designate geographic areas with similarities in climate, physiography, industry and population demographics. States within a census region do not universally accept Colorado coal, even within the Mountain Census Region. Therefore, the term "market region" is applied to those states within specific census regions which do consume coal from Colorado. The following market regions are recognized as purchasers of Colorado coal:

- . East North Central Market Region
- . West North Central Market Region
- . East and West South Central Market Region
- . Mountain Market Region
- Pacific Market Region

Figure 3-1 shows the market regions of Colorado coal as defined in this report. Market regions and states where Colorado coals are sold were examined for trends in coal consumption and geographic preference of origin of coal products. Trends in coal purchases are summarized by market region, and data are presented for each state market within the region. Data are from EIA Coal Distribution Reports. Consumption is equated with distribution in this analysis. Data for the year 1983 are annualized from the first three quarters of 1983. FIGURE 3-1 GEOGRAPHIC MARKET REGIONS OF COLORADO COAL (from EIA Coal Distribution Reports)



#### 3.3.1 East North Central Market Region

The portion of the East North Central Market Region significant to Colorado coal producers is composed of the states of Illinois and Indiana. Table 3-7 shows the total coal consumption of Illinois and Indiana by coal product. Table 3-8 lists coal consumption data for Illinois and Table 3-9 lists similar data for Indiana.

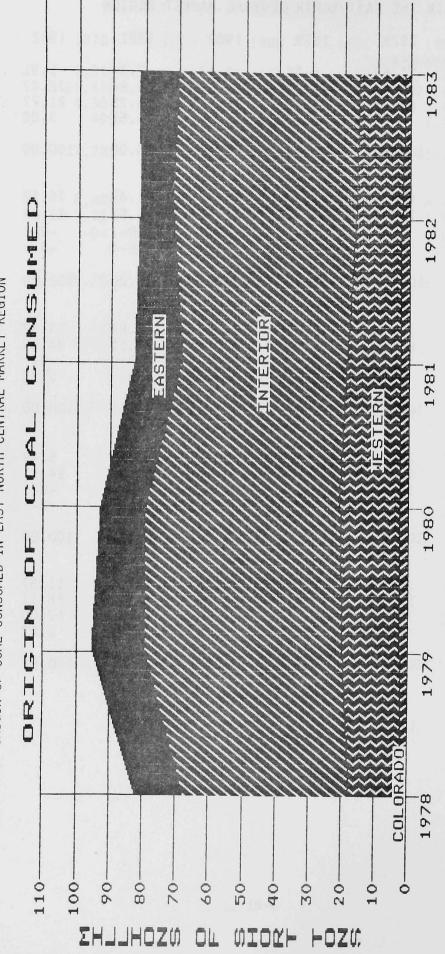
The only significant market for Colorado coal is the steam coal product. Steam coal consumption peaked in 1980 in the East North Central Market Region and since 1981 has stabilized at about 63 mtpy. This region is shifting steam coal purchases to the Interior and Eastern Coal Provinces. Table 3-10 lists the marketshare of point-of-origin coal in the East North Central Market Region.

In 1978, the Interior Coal Province provided the East North Central Market Region with about 67 percent of its steam coal needs. In 1983 the marketshare of Interior Coal Province steam coal was about 72 percent. Western coal, Rocky Mountain and Colorado held 28.4 percent of the East North Central Market Region steam market in 1978. However, in 1983 this figure dropped to about 24 percent.

East North Central Market Region utilities are shifting purchases from west to east at the same time that overall coal consumption is nearly unchanged. In 1978, Colorado shipped 304,000 tons to the East North Central Market Region for industrial and residential coal product markets. Since 1978 Colorado made insignificant contributions to these markets. In 1983, 16,000 tons were shipped to Indiana for met coal applications. Figure 3-2 shows point-of-origin data. TABLE 3-7ORIGIN OF COAL CONSUMED IN EAST NORTH CENTRAL MARKET REGION<br/>(In Thousands of Short Tons)

|                                                                | 1978                                | 1979                                | 1980                                | 1981                                | 1982                               | 1983                                |
|----------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|
| <u>STEAM</u><br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado  | 2,795<br>40,838<br>15,101<br>2,242  | 2,421<br>47,764<br>17,122<br>2,970  | 1,503<br>48,252<br>18,189<br>2,627  | 1,436<br>40,978<br>16,096<br>2,797  | 1,212<br>46,070<br>13,842<br>2,448 | 2,693<br>45,263<br>13,905<br>1,291  |
| TOTAL                                                          | 60,976                              | 70,277                              | 70,571                              | 61,307                              | 63,572                             | 63,152                              |
| MET<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado           | 10,464<br>2,396<br>-0-<br>-0-       | 11,723<br>3,012<br>-0-<br>-0-       | 10,793<br>2,943<br>-0-<br>-0-       | 10,518<br>2,391<br>-0-<br>-0-       | 7,310<br>2,290<br>-0-<br>-0-       | 8,299<br>2,380<br>-0-<br>16         |
| TOTAL                                                          | 12,860                              | 14,735                              | 13,736                              | 12,909                              | 9,600                              | 10,695                              |
| INDUSTRIAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado    | 1,008<br>6,660<br>232<br>269        | 1,227<br>8,531<br>130<br>7          | 1,184<br>6,794<br>-0-<br>-0-        | 1,793<br>6,042<br>-0-<br>-0-        | 1,094<br>6,270<br>-0-<br>17        | 1,156<br>6,164<br>-0-<br>11         |
| TOTAL                                                          | 8,169                               | 9,895                               | 7,978                               | 7,835                               | 7,381                              | 7,331                               |
| RESIDENT/COM.<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado | 73<br>120<br>26<br>35               | 32<br>95<br>2<br>-0-                | 20<br>353<br>-0-<br>-0-             | 31<br>510<br>-0-<br>-0-             | 49<br>843<br>-0-<br>-0-            | 55<br>948<br>-0-<br>-0-             |
| TOTAL                                                          | 254                                 | 129                                 | 373                                 | 541                                 | 892                                | 1,003                               |
| TOTAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado         | 14,340<br>50,014<br>15,359<br>2,554 | 15,403<br>59,402<br>17,254<br>2,977 | 13,500<br>58,342<br>18,189<br>2,627 | 13,778<br>49,921<br>16,096<br>2,797 | 9,665<br>55,473<br>13,842<br>2,465 | 12,203<br>54,755<br>13,905<br>1,318 |
| TOTAL                                                          | 82,267                              | 95,036                              | 92,658                              | 82,592                              | 81,445                             | 82,181                              |

## TABLE 3-8 ORIGIN OF COAL CONSUMED IN ILLINOIS (In Thousands of Short Tons)


| STEAM                                                                | 1978                                | 1979                                | 1980                                | 1981                                | 1982                                | 1983                                |
|----------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| <u>STEAM</u><br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado        | 1,284<br>19,368<br>10,800<br>1,743  | 1,572<br>20,598<br>13,331<br>1,767  | 733<br>19,858<br>14,286<br>1,631    | 949<br>16,761<br>12,084<br>2,026    | 802<br>19,510<br>10,361<br>1,445    | 1,165<br>18,856<br>10,940<br>551    |
| TOTAL                                                                | 33,195                              | 37,268                              | 36,508                              | 31,820                              | 32,118                              | 31,512                              |
| MET<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado                 | 1,482<br>649<br>-0-<br>-0-          | 1,572<br>531<br>-0-<br>-0-          | 1,445<br>607<br>-0-<br>-0-          | 1,343<br>385<br>-0-<br>-0-          | 850<br>399<br>-0-<br>-0-            | 1,092<br>384<br>-0-<br>-0-          |
| TOTAL                                                                | 2,131                               | 2,103                               | 2,052                               | 1,728                               | 1,249                               | 1,476                               |
| INDUSTRIAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado<br>TOTAL | 286<br>2,412<br>205<br>261<br>3,164 | 502<br>2,627<br>130<br>-0-<br>3,259 | 699<br>2,631<br>-0-<br>-0-<br>3,330 | 518<br>2,237<br>-0-<br>-0-<br>2,755 | 555<br>2,072<br>-0-<br>-0-<br>2,644 | 593<br>2,105<br>-0-<br>-0-<br>2,698 |
| RESIDENT/COM.<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado       | 53<br>104<br>26<br>26               | 22<br>65<br>2<br>-0-                | 15<br>138<br>-0-<br>-0-             | 14<br>203<br>-0-<br>-0-             | 7<br>303<br>-0-<br>-0-              | 8<br>309<br>-0-<br>-0-              |
| TOTAL                                                                | 209                                 | 89                                  | 153                                 | 217                                 | 310                                 | 317                                 |
| TOTAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado               | 3,105<br>22,533<br>11,031<br>2,030  | 3,668<br>23,821<br>13,463<br>1,767  | 2,892<br>23,234<br>14,286<br>1,631  | 2,824<br>19,586<br>12,084<br>2,026  | 2,214<br>22,284<br>10,361<br>1,462  | 2,858<br>21,654<br>10,940<br>551    |
| TOTAL                                                                | 38,699                              | 42,719                              | 42,043                              | 36,520                              | 36,321                              | 36,003                              |

# TABLE 3-9 ORIGIN OF COAL CONSUMED IN INDIANA (In Thousands of Short Tons)

| STEAM                                                          | 1978                             | 1979                               | 1980                             | 1981                             | 1982                              | 1983                            |
|----------------------------------------------------------------|----------------------------------|------------------------------------|----------------------------------|----------------------------------|-----------------------------------|---------------------------------|
| Eastern<br>Interior<br>Rocky Mtn.<br>Colorado                  | 1,511<br>21,470<br>4,301<br>499  | 849<br>27,166<br>3,791<br>1,203    | 770<br>28,394<br>3,903<br>996    | 487<br>24,217<br>4,012<br>771    | 410<br>26,560<br>3,481<br>1,003   | 1,528<br>26,407<br>2,965<br>740 |
| TOTAL                                                          | 27,781                           | 33,009                             | 34,063                           | 29,487                           | 31,454                            | 31,640                          |
| MET<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado           | 8,982<br>1,747<br>-0-<br>8       | 10,151<br>2,481<br>-0-<br>-0-      | 9,348<br>2,336<br>-0-<br>-0-     | 9,175<br>2,006<br>-0-<br>-0-     | 6,460<br>1,891<br>-0-<br>-0-      | 7,207<br>1,996<br>-0-<br>16     |
| TOTAL                                                          | 10,737                           | 12,632                             | 11,684                           | 11,181                           | 8,351                             | 9,219                           |
| INDUSTRIAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado    | 722<br>4,248<br>27<br>8          | 725<br>5,904<br>-0-<br>7           | 485<br>4,163<br>-0-<br>-0-       | 1,275<br>3,805<br>-0-<br>-0-     | 539<br>4,198<br>-0-<br>-0-        | 563<br>4,059<br>-0-<br>-0-      |
| TOTAL                                                          | 5,005                            | 6,636                              | 4,648                            | 5,080                            | 4,737                             | 4,622                           |
| RESIDENT/COM.<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado | 20<br>16<br>-0-<br>9             | 10<br>30<br>-0-<br>-0-             | 5<br>215<br>-0-<br>-0-           | 17<br>307<br>-0-<br>-0-          | 42<br>540<br>-0-<br>-0-           | 47<br>639<br>-0-<br>-0-         |
| TOTAL                                                          | 45                               | 40                                 | 220                              | 324                              | 582                               | 686                             |
| TOTAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado         | 11,235<br>27,481<br>4,328<br>524 | 11,735<br>35,581<br>3,791<br>1,210 | 10,608<br>35,108<br>3,903<br>996 | 10,954<br>30,335<br>4,012<br>771 | 7,451<br>33,189<br>3,481<br>1,003 | 9,345<br>33,101<br>2,965<br>756 |
| TOTAL                                                          | 43,568                           | 52,317                             | 50,615                           | 46,072                           | 45,124                            | 46,167                          |

## TABLE 3-10 MARKETSHARE OF POINT-OF-ORIGIN COAL CONSUMED IN THE EAST NORTH CENTRAL MARKET REGION

| STEAM                                                                 | 1978                             | 1979                            | 1980                            | 1981                            | 1982                            | 1983                            |
|-----------------------------------------------------------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| STEAM<br>Eastern<br>Interior<br>Rocky Mtn.                            | 4.58<br>66.97<br>24.77           | 3.44<br>67.97<br>24.36          | 2.13<br>68.37<br>25.77          | 2.34<br>66.84<br>26.25          | 1.91<br>72.47<br>21.77          | 4.26<br>71.67<br>22.02          |
| Colorado                                                              | 3.68                             | 4.23                            | 3.72                            | 4.56                            | 3.85                            | 2.04                            |
| TOTAL                                                                 | 100.00                           | 100.00                          | 100.00                          | 100.00                          | 100.00                          | 100.00                          |
| MET<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado                  | 81.37<br>18.63<br>-0-<br>-0-     | 79.56<br>20.44<br>-0-<br>-0-    | 78.57<br>21.43<br>-0-<br>-0-    | 81.48<br>18.52<br>-0-<br>-0-    | 76.15<br>23.85<br>-0-<br>-0-    | 77.60<br>22.25<br>-0-<br>0.15   |
| TOTAL                                                                 | 100.00                           | 100.00                          | 100.00                          | 100.00                          | 100.00                          | 100.00                          |
| INDUSTRIAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado           | 12.34<br>81.53<br>2.84<br>3.29   | 12.40<br>86.22<br>1.31<br>0.07  | 14.84<br>85.16<br>-0-<br>-0-    | 22.88<br>77.12<br>-0-<br>-0-    | 14.82<br>84.95<br>-0-<br>0.23   | 15.77<br>84.08<br>-0-<br>0.15   |
| TOTAL                                                                 | 100.00                           | 100.00                          | 100.00                          | 100.00                          | 100.00                          | 100.00                          |
| <u>RESIDENT/COM.</u><br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado | 28.74<br>47.24<br>10.24<br>13.78 | 24.81<br>73.64<br>1.55<br>-0-   | 5.36<br>94.64<br>-0-<br>-0-     | 5.73<br>94.27<br>-0-<br>-0-     | 5.49<br>94.51<br>-0-<br>-0-     | 5.48<br>94.52<br>-0-<br>-0-     |
| TOTAL                                                                 | 100.00                           | 100.00                          | 100.00                          | 100.00                          | 100.00                          | 100.00                          |
| <u>TOTAL</u><br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado         | 17.43<br>60.79<br>18.67<br>3.10  | 16.21<br>62.50<br>18.16<br>3.13 | 14.57<br>62.96<br>19.63<br>2.84 | 16.68<br>60.44<br>19.49<br>3.39 | 11.87<br>68.11<br>17.00<br>3.03 | 14.85<br>66.63<br>16.92<br>1.60 |
| TOTAL                                                                 | 100.00                           | 100.00                          | 100.00                          | 100.00                          | 100.00                          | 100.00                          |



ORIGIN OF COAL CONSUMED IN EAST NORTH CENTRAL MARKET REGION FIGURE 3-2

3-22

## 3.3.2 West North Central Market Region

The West North Central Market Region is composed of the states of Iowa, Kansas, Nebraska, Minnesota, Missouri and South Dakota. Oklahoma was excluded since it received only an insignificant, 14,000 ton, met coal shipment from Colorado in 1979.

Since 1980, overall consumption of coal in this market region stabilized at 70 mtpy. Met coal and industrial coal product consumption declined while steam coal product consumption hovered at the 65 mtpy level, in 1983. Residential/commercial coal products are at about the 500,000 tpy level of consumption.

Table 3-11 aggregates coal consumption for the West North Central Market Region. Tables 3-12, 3-13, 3-14, 3-15, 3-16 and 3-17 list individual coal consumption trends for Iowa, Kansas, Nebraska, Minnesota, Missouri and South Dakota, respectively.

Missouri is the largest consumer of steam coal in the region, currently at a level of 23 mtpy. In addition, Missouri is the only consumer of met coal although use of this coal product declined 67 percent since 1978. Industrial coal use in the West North Central Market Region is led by Iowa with a relatively consistent level of 1.4 mtpy. Residential and commercial coal use is highly variable in all states.

Table 3-18 lists trends in the marketshare of coal point-of-origin within the West North Central Market Region. The West North Central Market Region is well-located with respect to coal regions. Many states produce their own coal from the Interior Coal Province and are served by several rail lines.

Over the last six years the West North Central Market Region typically obtained 40 percent of its coal needs from the Interior Coal Province and 60 percent from other sources. Rocky Mountain coal producers provide most of West North Central's remaining coal requirements. Colorado is providing decreasing increments of coal to a market which has recently stabilized. Figure 3-3 shows point-of-origin data graphically. TABLE 3-11 ORIGIN OF COAL CONSUMED IN WEST NORTH CENTRAL MARKET REGION (In Thousands of Short Tons)

| CTE AM                                                         | 1978                               | 1979                               | 1980                               | 1981                             | 1982                           | 1983                           |
|----------------------------------------------------------------|------------------------------------|------------------------------------|------------------------------------|----------------------------------|--------------------------------|--------------------------------|
| STEAM<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado         | 424<br>22,441<br>30,066<br>1,484   | 838<br>24,956<br>35,611<br>1,754   | 1,025<br>24,680<br>38,087<br>1,552 | 367<br>22,346<br>39,467<br>892   | 165<br>25,150<br>39,384<br>543 | 132<br>25,198<br>39,942<br>284 |
| TOTAL                                                          | 54,415                             | 63,159                             | 65,344                             | 63,072                           | 65,242                         | 65,556                         |
| MET<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado           | 643<br>46<br>-0-<br>-0-            | 227<br>88<br>-0-<br>-0-            | 133<br>74<br>-0-<br>-0-            | 124<br>31<br>-0-<br>-0-          | 102<br>3<br>-0-<br>-0-         | 59<br>-0-<br>-0-<br>-0-        |
| TOTAL                                                          | 689                                | 315                                | 207                                | 155                              | 105                            | 59                             |
| INDUSTRIAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado    | 472<br>2,495<br>1,862<br>320       | 531<br>3,088<br>1,560<br>411       | 419<br>2,889<br>1,059<br>272       | 366<br>2,451<br>1,151<br>252     | 325<br>2,890<br>1,169<br>300   | 185<br>2,772<br>805<br>132     |
| TOTAL                                                          | 5,149                              | 5,590                              | 4,639                              | 4,220                            | 4,684                          | 3,894                          |
| RESIDENT/COM.<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado | 30<br>96<br>57<br>2                | 9<br>169<br>84<br>10               | 77<br>142<br>120<br>18             | 22<br>298<br>177<br>13           | 27<br>269<br>176<br>12         | 26<br>288<br>126<br>51         |
| TOTAL                                                          | 185                                | 272                                | 357                                | 510                              | 484                            | 491                            |
| <u>TOTAL</u><br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado  | 1,569<br>25,078<br>31,985<br>1,806 | 1,605<br>28,301<br>37,255<br>2,175 | 1,654<br>27,785<br>39,266<br>1,842 | 879<br>25,126<br>40,795<br>1,157 | 619<br>28,312<br>40,729<br>855 | 402<br>28,258<br>40,873<br>467 |
| TOTAL                                                          | 60,438                             | 69,336                             | 70,547                             | 67,951                           | 70,515                         | 70,000                         |

# TABLE 3-12 ORIGIN OF COAL CONSUMED IN IOWA (In Thousands of Short Tons)

| 6 <b>.</b>             | 1978         | 1979         | 1980         | 1981           | 1982           | 1983           |
|------------------------|--------------|--------------|--------------|----------------|----------------|----------------|
| STEAM<br>Eastern       | 27           | 16           | -0-          | 71             | -0-            | 8              |
| Interior               | 3,306        | 3,628        | 2,677        | 2,539          | 2,436          | 2,440          |
| Rocky Mtn.             | 5,311        | 7,826        | 7,966        | 8,072          | 8,526          | 9,023          |
| Colorado               | 624          | 342          | 353          | -0-            | 150            | 264            |
| TOTAL                  | 9,268        | 11,814       | 10,996       | 10,682         | 11,112         | 11,735         |
| MET                    |              |              |              |                |                | _              |
| Eastern                | -0-          | -0-          | -0-          | -0-            | -0-            | -0-            |
| Interior<br>Booky Mtr  | -0-          | -0-<br>-0-   | -0-<br>-0-   | -0-<br>-0-     | -0-<br>-0-     | -0-<br>-0-     |
| Rocky Mtn.<br>Colorado | -0-<br>-0-   | -0-<br>-0-   | -0-<br>-0-   | -0-            | -0-            | -0-            |
|                        | -0-          | -0-          | -0-          | -0-            | -0-            | -0-            |
| TOTAL                  | -0-          | -0-          | -0-          | -0-            | -0-            | -0-            |
| INDUSTRIAL             |              |              |              |                |                |                |
| Eastern                | 46           | 43           | 31           | 32             | 22             | 13             |
| Interior<br>Dealer Mtr | 862          | 1,205        | 1,136        | 962<br>66      | 1,226<br>15    | 1,343<br>67    |
| Rocky Mtn.<br>Colorado | 233<br>188   | 169<br>257   | 109<br>173   | 146            | 135            | 9              |
|                        | 100          | 257          | 175          | 140            | 100            | 5              |
| TOTAL                  | 1,329        | 1,674        | 1,449        | 1,206          | 1,398          | 1,432          |
| RESIDENT/COM.          |              |              |              |                |                |                |
| Eastern                | 7            | 3            | 2            | 6              | 5              | 1              |
| Interior<br>Decky Mt-  | 26           | 68           | 60<br>15     | 182<br>5       | 169<br>2       | 145<br>-0-     |
| Rocky Mtn.<br>Colorado | 26<br>2      | 6<br>7       | 13           | 5              | -0-            | -0-            |
| COTOFACO               | ٢            | '            | 15           | т              | -0-            | 5              |
| TOTAL                  | 61           | 84           | 90           | 197            | 176            | 149            |
| TOTAL                  |              |              |              |                |                |                |
| Eastern                | 80           | 62           | 33           | 109            | 27             | 22             |
| Interior<br>Backy Mtr  | 4,194        | 4,901        | 3,873        | 3,683<br>8,143 | 3,831<br>8,543 | 3,928<br>9,090 |
| Rocky Mtn.<br>Colorado | 5,570<br>814 | 8,001<br>606 | 8,090<br>539 | 8,143<br>150   | 285            | 276            |
|                        |              |              |              |                |                |                |
| TOTAL                  | 10,658       | 13,570       | 12,535       | 12,085         | 12,686         | 13,316         |

# TABLE 3-13 ORIGIN OF COAL CONSUMED IN KANSAS (In Thousands of Short Tons)

| STEAM                                                                | 1978                        | 1979                           | 1980                         | 1981                            | 1982                          | 1983                            |
|----------------------------------------------------------------------|-----------------------------|--------------------------------|------------------------------|---------------------------------|-------------------------------|---------------------------------|
| Eastern<br>Interior<br>Rocky Mtn.<br>Colorado                        | -0-<br>1,947<br>5,357<br>91 | -0-<br>2,066<br>6,984<br>363   | -0-<br>2,267<br>9,967<br>265 | 41<br>2,123<br>8,726<br>276     | -0-<br>1,877<br>9,213<br>1    | -0-<br>1,680<br>11,550<br>-0-   |
| TOTAL                                                                | 7,395                       | 9,413                          | 12,499                       | 11,166                          | 11,091                        | 13,230                          |
| MET<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado                 | -0-<br>-0-<br>-0-<br>-0-    | -0-<br>-0-<br>-0-<br>-0-       | -0-<br>-0-<br>-0-<br>-0-     | -0-<br>-0-<br>-0-<br>-0-        | -0-<br>-0-<br>-0-<br>-0-      | -0-<br>-0-<br>-0-<br>-0-        |
| TOTAL                                                                | -0-                         | -0-                            | -0-                          | -0-                             | -0-                           | -0-                             |
| INDUSTRIAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado<br>TOTAL | -0-<br>98<br>-0-<br>1<br>99 | -0-<br>206<br>-0-<br>13<br>219 | 10<br>321<br>-0-<br>4<br>335 | -0-<br>303<br>-0-<br>-0-<br>303 | -0-<br>337<br>-0-<br>3<br>340 | -0-<br>205<br>-0-<br>-0-<br>205 |
| RESIDENT/COM.<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado       | -0-<br>3<br>-0-<br>-0-      | -0-<br>8<br>-0-<br>-0-         | -0-<br>5<br>-0-<br>-0-       | -0-<br>2<br>-0-<br>-0-          | 4<br>7<br>-0-<br>-0-          | -0-<br>1<br>-0-<br>-0-          |
| TOTAL                                                                | 3                           | 8                              | 5                            | 2                               | 11                            | 1                               |
| TOTAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado               | -0-<br>2,048<br>5,357<br>92 | -0-<br>2,280<br>6,984<br>376   | 10<br>2,593<br>9,967<br>269  | 41<br>2,428<br>8,726<br>276     | 4<br>2,221<br>9,213<br>4      | -0-<br>1,886<br>11,550<br>-0-   |
| TOTAL                                                                | 7,497                       | 9,640                          | 12,839                       | 11,471                          | 11,442                        | 13,436                          |

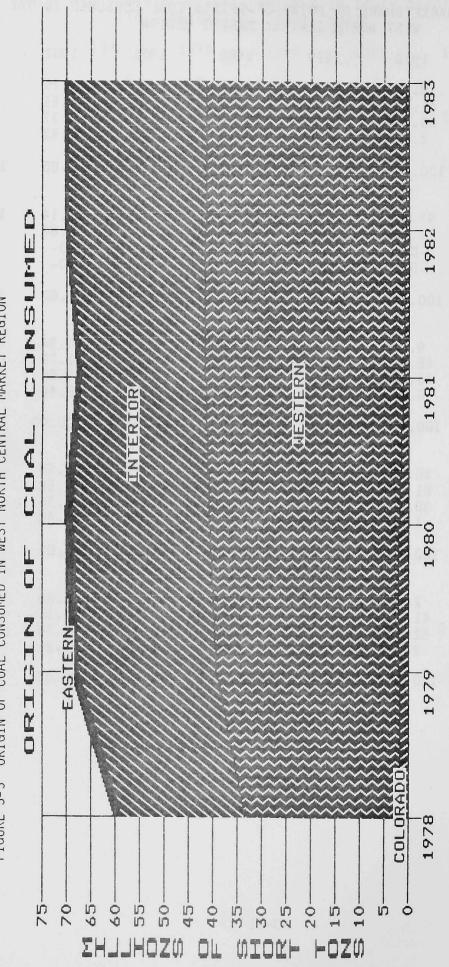
# TABLE 3-14 ORIGIN OF COAL CONSUMED IN NEBRASKA (In Thousands of Short Tons)

| STEAM                  | 1978         | 1979         | 1980         | 1981         | 1982         | 1983        |
|------------------------|--------------|--------------|--------------|--------------|--------------|-------------|
| Eastern                | -0-          | -0-          | -0-          | -0-          | -0-          | -0-         |
| Interior               | 58           | 3            | -0-          | -0-          | 5            | 3           |
| Rocky Mtn.<br>Colorado | 2,559<br>284 | 4,094<br>276 | 4,535<br>184 | 4,913<br>116 | 5,859<br>231 | 5,452<br>20 |
|                        | 204          | 270          | 20,          |              |              |             |
| TOTAL                  | 2,901        | 4,373        | 4,719        | 5,029        | 6,095        | 5,475       |
| MET                    |              |              |              |              |              |             |
| Eastern                | -0-          | -0-          | -0-          | -0-          | -0-          | -0-         |
| Interior               | -0-          | -0-          | -0-          | -0-          | -0-          | -0-         |
| Rocky Mtn.<br>Colorado | -0-<br>-0-   | -0-<br>-0-   | -0-<br>-0-   | -0-<br>-0-   | -0-          | -0-         |
| COTOPADO               | -0-          | -0-          | -0-          | -0-          | -0-          | -0-         |
| TOTAL                  | -0-          | -0-          | -0-          | -0-          | -0-          | -0-         |
| INDUSTRIAL             |              |              |              |              |              |             |
| Eastern                | -0-          | -0-          | 8            | -0-          | -0-          | 15          |
| Interior               | -0-          | -0-          | -0-          | -0-          | -0-          | -0-         |
| Rocky Mtn.             | 457          | 404          | 191          | 220          | 177          | 15          |
| Colorado               | 97           | 136          | 92           | 85           | 93           | 31          |
| TOTAL                  | 554          | 540          | 291          | 305          | 270          | 61          |
| RESIDENT/COM.          |              |              |              |              |              |             |
| Eastern                | -0-          | -0-          | -0-          | -0-          | -0-          | -0-         |
| Interior               | -0-          | -0-          | -0-          | -0-          | -0-          | -0-         |
| Rocky Mtn.             | 6<br>-0-     | 14<br>2      | 17<br>2      | 15<br>1      | 15<br>12     | 8<br>48     |
| Colorado               | -0-          | 2            | 2            | I            | 12           | 40          |
| TOTAL                  | 6            | 16           | 19           | 16           | 27           | 56          |
| TOTAL                  |              |              |              |              |              |             |
| Eastern                | -0-          | -0-          | 8            | -0-          | -0-          | 15          |
| Interior               | 58           | 3            | -0-          | -0-          | 5            | 3           |
| Rocky Mtn.             | 3,022        | 4,512        | 4,743        | 5,148        | 6,051        | 5,475       |
| Colorado               | 381          | 414          | 278          | 202          | 336          | 99          |
| TOTAL                  | 3,461        | 4,929        | 5,029        | 5,350        | 6,392        | 5,592       |
|                        |              |              |              |              |              |             |

# TABLE 3-15 ORIGIN OF COAL CONSUMED IN MINNESOTA (In Thousands of Short Tons)

| STEAM                   | 1978   | 1979   | 1980   | 1981   | 1982   | 1983   |
|-------------------------|--------|--------|--------|--------|--------|--------|
| <u>STEAM</u><br>Eastern | 23     | 40     | 51     | 185    | 159    | 40     |
| Interior                | 751    | 772    | 800    | 587    | 715    | 515    |
| Rocky Mtn.              | 10,413 | 11,738 | 11,247 | 11,193 | 10,303 | 9,004  |
| Colorado                | 11     | -0-    | -0-    | -0-    | -0-    | -0-    |
| TOTAL                   | 11,198 | 12,550 | 12,098 | 11,965 | 11,177 | 9,559  |
| MET                     |        |        |        |        |        |        |
| Eastern                 | 472    | 43     | 9      | -0-    | -0-    | -0-    |
| Interior                | 36     | 2      | -0-    | -0-    | -0-    | -0-    |
| Rocky Mtn.              | -0-    | -0-    | -0-    | -0-    | -0-    | -0-    |
| Colorado                | -0-    | -0-    | -0-    | -0-    | -0-    | -0-    |
| TOTAL                   | 508    | 45     | 9      | -0-    | -0-    | -0-    |
| INDUSTRIAL              |        |        |        |        |        |        |
| Eastern                 | 302    | 452    | 268    | 255    | 169    | 104    |
| Interior                | 163    | 161    | 95     | 182    | 83     | 89     |
| Rocky Mtn.              | 977    | 931    | 663    | 733    | 803    | 523    |
| Colorado                | -0-    | 4      | -0-    | 21     | 68     | 87     |
| TOTAL                   | 1,442  | 1,548  | 1,026  | 1,191  | 1,123  | 803    |
| RESIDENT/COM.           |        |        |        |        |        |        |
| Eastern                 | 22     | 6      | 64     | 13     | 16     | 17     |
| Interior                | 4      | 10     | 5      | 9      | 5      | 17     |
| Rocky Mtn.              | 25     | 63     | 73     | 109    | 141    | 115    |
| Colorado                | -0-    | 1      | 2      | -0-    | -0-    | -0-    |
| TOTAL                   | 51     | 80     | 144    | 131    | 162    | 149    |
| TOTAL                   |        |        |        |        |        |        |
| Eastern                 | 819    | 541    | 392    | 453    | 344    | 161    |
| Interior                | 954    | 945    | / 900  | 778    | 803    | 621    |
| Rocky Mtn.              | 11,415 | 12,732 | 11,983 | 12,035 | 11,247 | 9,642  |
| Colorado                | 11     | 5      | 2      | 21     | 68     | 87     |
| TOTAL                   | 13,199 | 14,223 | 13,277 | 13,287 | 12,462 | 10,511 |

## TABLE 3-16 ORIGIN OF COAL CONSUMED IN MISSOURI (In Thousands of Short Tons)


| STEAM                                                          | 1978                          | 1979                            | 1980                            | 1981                          | 1982                          | 1983                          |
|----------------------------------------------------------------|-------------------------------|---------------------------------|---------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Eastern<br>Interior<br>Rocky Mtn.<br>Colorado                  | 371<br>16,379<br>3,296<br>474 | 782<br>18,487<br>2,409<br>773   | 974<br>18,915<br>1,603<br>744   | 70<br>17,097<br>3,843<br>500  | 2<br>20,117<br>3,248<br>161   | 84<br>20,560<br>2,865<br>-0-  |
| TOTAL                                                          | 20,520                        | 22,451                          | 22,236                          | 21,510                        | 23,528                        | 23,509                        |
| MET<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado           | 171<br>10<br>-0-<br>-0-       | 184<br>86<br>-0-<br>-0-         | 124<br>74<br>-0-<br>-0-         | 124<br>31<br>-0-<br>-0-       | 102<br>3<br>-0-<br>-0-        | 59<br>-0-<br>-0-<br>-0-       |
| TOTAL                                                          | 181                           | 270                             | 198                             | 155                           | 105                           | 59                            |
| INDUSTRIAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado    | 123<br>1,372<br>29<br>24      | 36<br>1,516<br>-0-<br>-0-       | 74<br>1,337<br>-0-<br>-0-       | 46<br>1,307<br>-0-<br>-0-     | 64<br>1,237<br>-0-<br>-0-     | 53<br>1,135<br>-0-<br>-0-     |
| TOTAL                                                          | 1,518                         | 1,552                           | 1,411                           | 1,353                         | 1,301                         | 1,188                         |
| RESIDENT/COM.<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado | -0-<br>63<br>-0-<br>-0-       | -0-<br>83<br>-0-<br>-0-         | 10<br>72<br>-0-<br>-0-          | 1<br>105<br>1<br>-0-          | -0-<br>88<br>-0-<br>-0-       | 7<br>125<br>-0-<br>-0-        |
| TOTAL                                                          | 63                            | 83                              | 82                              | 107                           | 88                            | 132                           |
| TOTAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colordo          | 665<br>17,824<br>3,325<br>498 | 1,002<br>20,172<br>2,409<br>773 | 1,182<br>20,398<br>1,603<br>744 | 241<br>18,540<br>3,844<br>500 | 168<br>21,445<br>3,248<br>161 | 203<br>21,820<br>2,865<br>-0- |
| TOTAL                                                          | 22,312                        | 24,356                          | 23,927                          | 23,125                        | 25,022                        | 24,888                        |

# TABLE 3-17 ORIGIN OF COAL CONSUMED IN SOUTH DAKOTA (In Thousands of Short Tons)

| STEAM                                                                | 1978                         | 1979                        | 1980                        | 1981                           | 1982                       | 1983                          |
|----------------------------------------------------------------------|------------------------------|-----------------------------|-----------------------------|--------------------------------|----------------------------|-------------------------------|
| Eastern<br>Interior<br>Rocky Mtn.<br>Colorado                        | 3<br>-0-<br>3,130<br>-0-     | -0-<br>-0-<br>2,560<br>-0-  | -0-<br>21<br>2,769<br>6     | -0-<br>-0-<br>2,720<br>-0-     | 4<br>-0-<br>2,235<br>-0-   | -0-<br>-0-<br>2,048<br>-0-    |
| TOTAL                                                                | 3,133                        | 2,560                       | 2,796                       | 2,720                          | 2,239                      | 2,048                         |
| MET<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado                 | -0-<br>-0-<br>-0-<br>-0-     | -0-<br>-0-<br>-0-<br>-0-    | -0-<br>-0-<br>-0-<br>-0-    | -0-<br>-0-<br>-0-<br>-0-       | -0-<br>-0-<br>-0-<br>-0-   | -0-<br>-0-<br>-0-<br>-0-      |
| TOTAL                                                                | -0-                          | -0-                         | -0-                         | -0-                            | -0-                        | -0-                           |
| INDUSTRIAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado<br>TOTAL | 1<br>-0-<br>166<br>10<br>177 | -0-<br>-0-<br>56<br>1<br>57 | 28<br>-0-<br>96<br>3<br>127 | 33<br>-0-<br>132<br>-0-<br>165 | 70<br>7<br>174<br>1<br>252 | -0-<br>-0-<br>200<br>5<br>205 |
| RESIDENT/COM.<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado       | 1<br>-0-<br>-0-<br>-0-       | -0-<br>-0-<br>1<br>-0-      | 1<br>-0-<br>15<br>1         | 2<br>-0-<br>47<br>8            | 2<br>-0-<br>18<br>-0-      | 1<br>-0-<br>3<br>-0-          |
| TOTAL                                                                | 1                            | 1                           | 17                          | 57                             | 20                         | 4                             |
| <u>TOTAL</u><br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado        | 5<br>-0-<br>3,296<br>10      | -0-<br>-0-<br>2,617<br>1    | 29<br>21<br>2,880<br>10     | 35<br>-0-<br>2,899<br>8        | 76<br>7<br>2,427<br>1      | 1<br>-0-<br>2,251<br>5        |
| TOTAL                                                                | 3,311                        | 2,618                       | 2,940                       | 2,942                          | 2,511                      | 2,257                         |

## TABLE 3-18 MARKETSHARE OF POINT-OF-ORIGIN COAL CONSUMED IN THE WEST NORTH CENTRAL MARKET REGION

| STEAM                                                                | 1978                                     | 1979                                     | 1980                                     | 1981                                     | 1982                                     | 1983                                     |
|----------------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| Eastern<br>Interior<br>Rocky Mtn.<br>Colorado                        | 0.78<br>41.24<br>55.25<br>2.73           | 1.33<br>39.51<br>56.38<br>2.78           | 1.57<br>37.77<br>58.29<br>2.38           | 0.58<br>35.42<br>62.57<br>1.41           | 0.25<br>38.55<br>60.37<br>0.83           | 0.20<br>38.44<br>60.93<br>0.43           |
| TOTAL                                                                | 100.00                                   | 100.00                                   | 100.00                                   | 100.00                                   | 100.00                                   | 100.00                                   |
| MET<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado                 | 93.32<br>6.68<br>-0-<br>-0-              | 72.06<br>27.94<br>-0-<br>-0-             | 64.25<br>35.75<br>-0-<br>-0-             | 80.00<br>20.00<br>-0-<br>-0-             | 97.14<br>2.86<br>-0-<br>-0-              | 100.00<br>-0-<br>-0-<br>-0-              |
| TOTAL                                                                | 100.00                                   | 100.00                                   | 100.00                                   | 100.00                                   | 100.00                                   | 100.00                                   |
| INDUSTRIAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado<br>TOTAL | 9.17<br>48.46<br>36.16<br>6.21<br>100.00 | 9.50<br>55.24<br>27.91<br>7.35<br>100.00 | 9.03<br>62.28<br>22.83<br>5.86<br>100.00 | 8.67<br>58.08<br>27.27<br>5.97<br>100.00 | 6.94<br>61.70<br>24.96<br>6.40<br>100.00 | 4.75<br>71.19<br>20.67<br>3.39<br>100.00 |
| RESIDENT/COM.<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado       | 16.22<br>51.89<br>30.81<br>1.08          | 3.31<br>62.13<br>30.88<br>3.68           | 21.57<br>39.78<br>33.61<br>5.04          | 4.31<br>58.43<br>34.71<br>2.55           | 5.58<br>55.58<br>36.36<br>2.48           | 5.30<br>58.66<br>25.66<br>10.39          |
| TOTAL                                                                | 100.00                                   | 100.00                                   | 100.00                                   | 100.00                                   | 100.00                                   | 100.00                                   |
| TOTAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado               | 2.60<br>41.49<br>52.92<br>2.99           | 2.31<br>40.82<br>53.73<br>3.14           | 2.34<br>39.39<br>55.66<br>2.61           | 1.29<br>36.97<br>60.03<br>1.70           | 0.88<br>40.15<br>57.76<br>1.21           | 0.57<br>40.37<br>58.39<br>0.67           |
| TOTAL                                                                | 100.00                                   | 100.00                                   | 100.00                                   | 100.00                                   | 100.00                                   | 100.00                                   |



ORIGIN OF COAL CONSUMED IN WEST NORTH CENTRAL MARKET REGION FIGURE 3-3

3-32

3.3.3 East and West South Central Market Region

The East and West South Central Market Region consists of two states, Texas and Mississippi. These states are presently the only Gulf Coast markets for Colorado coal. Table 3-19 combines coal consumption data for Texas and Mississippi. Tables 3-20 and 3-21 list coal consumption trends for Texas and Mississippi, respectively.

Population growth and conversion of generating plants from natural gas to coal are prompting the rise in coal consumption in this region. Steam coal consumption has increased 144 percent since 1978. Most of the increase is due to the Texas market.

Texas is also host to an historical met coal market which suffered sharp declines and was nonexistent in 1983. Industrial coal consumption peaked in 1981 and is trailing off at a volume of 4.2 mtpy in 1983. Due to the mild climate and availability of more convenient substitutes, residential coal use is insignificant.

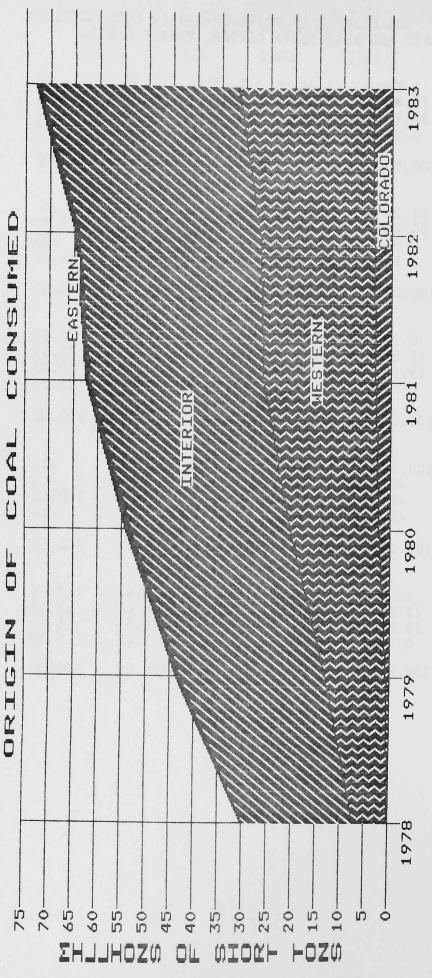
Table 3-22 lists the trends of coal origin destined for the East and West South Central Market Region. This market is growing and new coal requirements are being met by Rocky Mountain producers including Colorado. Since 1978 coal produced by the Interior Coal Province declined in significance from 73 percent of market to 55 percent in 1983. Along with the preference of western coals, Colorado increased its share of the market from 0.97 percent in 1978 to 5.45 percent in 1983. Figure 3-4 displays these data.

## TABLE 3-19 ORIGIN OF COAL CONSUMED IN EAST AND WEST SOUTH CENTRAL MARKET REGION (In Thousands of Short Tons)

| STEAM                                                                | 1978                            | 1979                               | 1980                               | 1981                              | 1982                               | 1983                               |
|----------------------------------------------------------------------|---------------------------------|------------------------------------|------------------------------------|-----------------------------------|------------------------------------|------------------------------------|
| Eastern<br>Interior<br>Rocky Mtn.<br>Colorado                        | 360<br>20,847<br>6,929<br>262   | 557<br>26,278<br>11,860<br>735     | 748<br>30,604<br>18,132<br>1,730   | 802<br>31,358<br>22,939<br>2,570  | 863<br>33,591<br>23,153<br>2,833   | 1,104<br>37,364<br>27,775<br>3,012 |
| TOTAL                                                                | 28,398                          | 39,430                             | 51,214                             | 57,669                            | 60,440                             | 69,255                             |
| MET<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado                 | 117<br>226<br>-0-<br>31         | 463<br>449<br>-0-<br>210           | 284<br>366<br>-0-<br>190           | 11<br>409<br>-0-<br>173           | -0-<br>255<br>-0-<br>145           | -0-<br>-0-<br>-0-<br>-0-           |
| TOTAL                                                                | 374                             | 1,122                              | 840                                | 593                               | 400                                | -0-                                |
| INDUSTRIAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado<br>TOTAL | 9<br>1,415<br>349<br>3<br>1,776 | 9<br>2,827<br>474<br>109<br>3,419  | 124<br>1,721<br>12<br>603<br>2,460 | 90<br>3,806<br>79<br>692<br>4,667 | 108<br>3,254<br>20<br>917<br>4,299 | 22<br>3,213<br>1<br>995<br>4,231   |
| RESIDENT/COM.<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado       | 1,770<br>1<br>-0-<br>-0-<br>-0- | -0-<br>-0-<br>-0-<br>-0-           | -0-<br>-0-<br>1<br>-0-             | 5<br>-0-<br>-0-<br>-0-            | -0-<br>-0-<br>5<br>-0-             | -0-<br>-0-<br>-0-<br>-0-           |
| TOTAL                                                                | 1                               | -0-                                | 1                                  | 5                                 | 5                                  | -0-                                |
| TOTAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado               | 487<br>22,488<br>7,278<br>296   | 1,029<br>29,554<br>12,334<br>1,054 | 1,156<br>32,691<br>18,145<br>2,523 | 908<br>35,573<br>23,018<br>3,435  | 971<br>37,100<br>23,178<br>3,895   | 1,146<br>40,577<br>27,776<br>4,007 |
| TOTAL                                                                | 30,549                          | 43,971                             | 54,515                             | 62,934                            | 65,144                             | 73,506                             |

## TABLE 3-20 ORIGIN OF COAL CONSUMED IN TEXAS (In Thousands of Short Tons)

| STE AM                                                               | 1978                            | 1979                              | 1980                               | 1981                              | 1982                              | 1983                             |
|----------------------------------------------------------------------|---------------------------------|-----------------------------------|------------------------------------|-----------------------------------|-----------------------------------|----------------------------------|
| <u>STEAM</u><br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado        | -0-<br>19,740<br>6,920<br>6     | 15<br>24,951<br>11,600<br>38      | 28<br>28,909<br>17,727<br>982      | -0-<br>30,318<br>22,355<br>1,795  | -0-<br>32,250<br>22,366<br>2,048  | -0-<br>36,291<br>27,027<br>2,051 |
| TOTAL                                                                | 26,666                          | 36,604                            | 47,646                             | 54,468                            | 56,664                            | 65,389                           |
| MET<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado                 | 117<br>226<br>-0-<br>31         | 463<br>449<br>-0-<br>210          | 284<br>366<br>-0-<br>190           | 11<br>409<br>-0-<br>173           | -0-<br>255<br>-0-<br>145          | -0-<br>-0-<br>-0-<br>-0-         |
| TOTAL                                                                | 374                             | 1,122                             | 840                                | 593                               | 400                               | -0-                              |
| INDUSTRIAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado<br>TOTAL | 2<br>1,352<br>349<br>3<br>1,706 | 9<br>2,770<br>474<br>109<br>3,362 | 124<br>1,667<br>12<br>603<br>2,406 | 83<br>3,702<br>79<br>692<br>4,556 | 82<br>3,191<br>20<br>917<br>4,210 | 1<br>3,080<br>1<br>995<br>4,077  |
| RESIDENT/COM.<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado       | -0-<br>-0-<br>-0-<br>-0-        | -0-<br>-0-<br>-0-<br>-0-<br>-0-   | -0-<br>-0-<br>1<br>-0-             | -0-<br>-0-<br>-0-<br>-0-          | -0-<br>-0-<br>5<br>-0-            | -0-<br>-0-<br>-0-<br>-0-         |
| TOTAL                                                                | -0-                             | -0-                               | 1                                  | 5                                 | 5                                 | -0-                              |
| TOTAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado               | 119<br>21,318<br>7,269<br>40    | 487<br>28,170<br>12,074<br>357    | 436<br>30,942<br>17,740<br>1,775   | 99<br>34,429<br>22,434<br>2,660   | 82<br>35,696<br>22,391<br>3,110   | 21<br>39,371<br>27,028<br>3,046  |
| TOTAL                                                                | 28,746                          | 41,088                            | 50,893                             | 59,622                            | 61,279                            | 69,466                           |


# TABLE 3-21 ORIGIN OF COAL CONSUMED IN MISSISSIPPI (In Thousands of Short Tons)

| STEAM                                                          | 1978                     | 1979                       | 1980                       | 1981                       | 1982                       | 1983                         |
|----------------------------------------------------------------|--------------------------|----------------------------|----------------------------|----------------------------|----------------------------|------------------------------|
| Eastern<br>Interior<br>Rocky Mtn.<br>Colorado                  | 360<br>1,107<br>9<br>256 | 542<br>1,327<br>260<br>697 | 720<br>1,695<br>405<br>748 | 802<br>1,040<br>584<br>775 | 803<br>1,341<br>787<br>785 | 1,104<br>1,073<br>748<br>961 |
| TOTAL                                                          | 1,732                    | 2,826                      | 3,568                      | 3,201                      | 3,776                      | 3,886                        |
| MET<br>Eastern<br>Interior<br>Rocky Mt.<br>Colorado            | -0-<br>-0-<br>-0-<br>-0- | -0-<br>-0-<br>-0-<br>-0-   | -0-<br>-0-<br>-0-<br>-0-   | -0-<br>-0-<br>-0-<br>-0-   | -0-<br>-0-<br>-0-<br>-0-   | -0-<br>-0-<br>-0-<br>-0-     |
| TOTAL                                                          | -0-                      | -0-                        | -0-                        | -0-                        | -0-                        | -0-                          |
| INDUSTRIAL<br>Eastern                                          | 7<br>63                  | -0-<br>57                  | -0-<br>54                  | 7<br>104                   | 26<br>63                   | 21<br>133                    |
| Rocky Mtn.<br>Colorado                                         | -0-<br>-0-               | -0-<br>-0-                 | -0-<br>-0-                 | -0-<br>-0-                 | -0-<br>-0-                 | -0-<br>-0-                   |
| TOTAL                                                          | 70                       | 57                         | 54                         | 111                        | 89                         | 154                          |
| RESIDENT/COM.<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado | 1<br>-0-<br>-0-<br>-0-   | -0-<br>-0-<br>-0-<br>-0-   | -0-<br>1<br>-0-<br>-0-     | -0-<br>-0-<br>-0-<br>-0-   | -0-<br>-0-<br>-0-<br>-0-   | -0-<br>3<br>-0-<br>-0-       |
| TOTAL                                                          | 1                        | -0-                        | 1                          | -0-                        | -0-                        | 3                            |
| <u>TOTAL</u><br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado  | 368<br>1,170<br>9<br>256 | 542<br>1,384<br>260<br>697 | 720<br>1,750<br>405<br>748 | 809<br>1,144<br>584<br>775 | 889<br>1,404<br>787<br>785 | 1,125<br>1,209<br>748<br>961 |
| TOTAL                                                          | 1,803                    | 2,883                      | 3,623                      | 3,312                      | 3,865                      | 4,043                        |

### TABLE 3-22 MARKETSHARE OF POINT-OF-ORIGIN COAL CONSUMED IN EAST AND WEST SOUTH CENTRAL MARKET REGION

| STEAM<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado                                           | 1.27<br>73.41<br>24.40<br>0.92           | 1.41<br>66.64<br>30.08<br>1.86                  | 1.46<br>59.76<br>35.40<br>3.38                  | 1.39<br>54.38<br>39.78<br>4.46           | 1.43<br>55.58<br>38.31<br>4.69                  | 1.59<br>53.95<br>40.11<br>4.35           |
|--------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------|-------------------------------------------------|------------------------------------------|-------------------------------------------------|------------------------------------------|
| TOTAL                                                                                            | 100.00                                   | 100.00                                          | 100.00                                          | 100.00                                   | 100.00                                          | 100.00                                   |
| <u>MET</u><br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado                                      | 31.28<br>60.43<br>-0-<br>8.29            | 41.27<br>40.02<br>-0-<br>18.72                  | 33.81<br>43.57<br>-0-<br>22.62                  | 1.85<br>68.97<br>-0-<br>29.17            | -0-<br>63.75<br>-0-<br>36.25                    | -0-<br>-0-<br>-0-<br>-0-                 |
| TOTAL                                                                                            | 100.00                                   | 100.00                                          | 100.00                                          | 100.00                                   | 100.00                                          | 100.00                                   |
| INDUSTRIAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado<br>TOTAL<br>RESIDENT/COM.<br>Eastern | 0.51<br>79.67<br>19.65<br>0.17<br>100.00 | 0.26<br>82.68<br>13.86<br>3.19<br>100.00<br>-0- | 5.04<br>69.96<br>0.49<br>24.51<br>100.00<br>-0- | 1.93<br>81.55<br>1.69<br>14.83<br>100.00 | 2.51<br>75.69<br>0.47<br>21.33<br>100.00<br>-0- | 0.52<br>75.94<br>0.02<br>23.52<br>100.00 |
| Interior<br>Rocky Mtn.                                                                           | -0-<br>-0-                               | -0-<br>-0-                                      | -0-<br>100.00                                   | -0-<br>-0-                               | -0-<br>100.00                                   | -0-<br>-0-                               |
| Colorado                                                                                         | -0-                                      | -0-                                             | -0-                                             | -0-                                      | -0-                                             | -0-                                      |
| TOTAL                                                                                            | 100.00                                   | 100.00                                          | 100.00                                          | 100.00                                   | 100.00                                          | 100.00                                   |
| <u>TOTAL</u><br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado<br>TOTAL                           | 1.59<br>73.61<br>23.82<br>0.97<br>100.00 | 2.34<br>67.21<br>28.05<br>2.40<br>100.00        | 2.12<br>59.97<br>33.28<br>4.63<br>100.00        | 1.44<br>56.62<br>36.57<br>5.46<br>100.00 | 1.49<br>56.95<br>35.58<br>5.98<br>100.00        | 1.56<br>55.20<br>37.79<br>5.45<br>100.00 |
| · · · · · <b>-</b>                                                                               |                                          | 200000                                          | 200000                                          | 200100                                   | 100100                                          | 100000                                   |

FIGURE 3-4 ORIGIN OF COAL CONSUMED IN EAST AND WEST SOUTH CENTRAL MARKET REGION



<sup>3-38</sup> 

## 3.3.4 Mountain Market Region

Table 3-23 lists the aggregate coal consumption and point of origin for states in the Mountain Market Region. Tables 3-24, 3-25, 3-26, 3-27, 3-28 and 3-29 list state consumption trends for Arizona, Colorado Montana, New Mexico, Utah and Wyoming, respectively.

Coal consumption peaked in 1982 in all coal products except met coal. Wyoming is the largest steam coal consumer in the region and burns only its own coal for raising steam. Arizona and New Mexico are large steam coal product consumers as well, and these states produce and consume mainly their own coal.

Utah is currently the only market for met coal and will be served by Colorado. Residential/commercial use of coal is quite variable, generally in decline and not a major market.

Table 3-30 lists the marketshare of point-of-origin coal serving the Mountain Market Region. Entrenched in coal fields, all states in the Mountain Market Region have active coal production and developed markets. The Mountain Market Region takes over 99 percent of its coal needs from states within the region. The contribution of Colorado coal has declined since 1979. Figure 3-5 shows data pertaining to point-of-origin of Colorado coal. Figure 3-6 shows this relationship for the Mountain Market Region in terms of production.

# TABLE 3-23 ORIGIN OF COAL CONSUMED IN MOUNTAIN MARKET REGION (In Thousands of Short Tons)

| STEAM                  | 1978            | 1979            | 1980            | 1981            | 1982            | 1983            |
|------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Eastern<br>Interior    | -0-<br>-0-      | -0-<br>-0-      | -0-<br>-0-      | -0-<br>-0-      | 26<br>-0-       | -0-<br>-0-      |
| Rocky Mtn.<br>Colorado | 37,330<br>6,022 | 44,609<br>8,533 | 51,893<br>8,413 | 53,318<br>8,277 | 56,114<br>8,175 | 51,943<br>7,607 |
| TOTAL                  | 43,352          | 53,142          | 60,306          | 61,595          | 64,315          | 59,550          |
| MET                    | 0               | 0               | 0               | 105             | 0               | 0               |
| Eastern<br>Interior    | 8<br>-0-        | -0-<br>206      | -0-<br>124      | 106<br>210      | -0-<br>67       | -0-<br>-0-      |
| Rocky Mtn.             | 352             | 324             | 318             | 267             | 137             | 33              |
| Colorado               | 1,865           | 2,124           | 1,910           | 1,762           | 987             | 825             |
| TOTAL                  | 2,225           | 2,654           | 2,352           | 2,345           | 1,191           | 858             |
| INDUSTRIAL             | 17              | 0               | 0               | 0               | 0               | 3               |
| Eastern<br>Interior    | 17<br>122       | -0-<br>-0-      | 2<br>84         | -0-             | 8<br>2          | -0-             |
| Rocky Mtn.             | 3,065           | 4,664           | 2,884           | 3,564           | 3,774           | 2,945           |
| Colorado               | 444             | 601             | 816             | 909             | 906             | 1,097           |
| TOTAL                  | 3,648           | 5,265           | 3,786           | 4,475           | 4,690           | 4,045           |
| RESIDENT/COM.          | 0               | 0               | 0               | 0               | 0               | A               |
| Eastern                | -0-             | -0-             | -0-<br>-0-      | -0-<br>-0-      | -0-<br>-0-      | 4<br>-0-        |
| Interior<br>Rocky Mtn. | 41<br>159       | -0-<br>187      | -0-<br>404      | 333             | 351             | 271             |
| Colorado               | 28              | 55              | 96              | 82              | 124             | 56              |
| TOTAL                  | 228             | 242             | 500             | 415             | 475             | 331             |
| TOTAL                  |                 |                 |                 |                 |                 |                 |
| Eastern                | 25              | -0-             | 2               | 106             | 34              | 7               |
| Interior               | 163             | 206             | 208             | 212             | 69              | 0               |
| Rocky Mtn.             | 40,906          | 49,784          | 55,499          | 57,482          | 60,376          | 55,192          |
| Colorado               | 8,359           | 11,313          | 11,235          | 11,030          | 10,192          | 9,585           |
| TOTAL                  | 49,453          | 61,303          | 66,944          | 68,830          | 70,671          | 64,784          |

# TABLE 3-24 ORIGIN OF COAL CONSUMED IN ARIZONA (In Thousands of Short Tons)

| STEAM                  | 1978       | 1979          | 1980          | 1981          | 1982          | 1983          |
|------------------------|------------|---------------|---------------|---------------|---------------|---------------|
| Eastern                | -0-        | -0-           | -0-           | -0-           | -0-           | -0-           |
| Interior<br>Rocky Mtn. | -0-        | -0-           | -0-           | -0-           | -0-           | -0-<br>11,317 |
| Colorado               | 7,702<br>8 | 10,993<br>-0- | 12,510<br>-0- | 12,930<br>-0- | 12,632<br>-0- | -0-           |
|                        | 0          | Ū             | Ũ             | Ū             | •             | •             |
| TOTAL                  | 7,710      | 10,993        | 12,510        | 12,930        | 12,632        | 11,317        |
| MET                    |            |               |               |               |               |               |
| Eastern                | -0-        | -0-           | -0-           | -0-           | -0-           | -0-           |
| Interior               | -0-        | -0-           | -0-           | -0-           | -0-           | -0-           |
| Rocky Mtn.             | -0-        | -0-           | -0-           | -0-           | -0-           | -0-           |
| Colorado               | -0-        | -0-           | -0-           | -0-           | -0-           | -0-           |
| TOTAL                  | -0-        | -0-           | -0-           | -0-           | -0-           | -0-           |
| INDUSTRIAL             |            |               |               |               |               |               |
| Eastern                | -0-        | -0-           | -0-           | -0-           | -0-           | -0-           |
| Interior               | -0-        | -0-           | -0-           | -0-           | -0-           | -0-           |
| Rocky Mtn.             | 433        | 1,884         | 579           | 1,024         | 1,295         | 1,217         |
| Colorado               | -0-        | -0-           | 76            | 153           | 213           | 177           |
| TOTAL                  | 433        | 1,884         | 655           | 1,177         | 1,508         | 1,394         |
| RESIDENT/COM           |            |               |               |               |               |               |
| Eastern                | -0-        | -0-           | -0-           | -0-           | -0-           | -0-           |
| Interior               | -0-        | -0-           | -0-           | -0-           | -0-           | -0-           |
| Rocky Mtn.             | -0-        | -0-           | -0-           | -0-           | -0-           | -0-           |
| Colorado               | -0-        | -0-           | -0-           | -0-           | -0-           | -0-           |
| TOTAL                  | -0-        | -0-           | -0-           | -0-           | -0-           | -0-           |
| TOTAL                  |            |               |               |               |               |               |
| Eastern                | -0-        | -0-           | -0-           | -0-           | -0-           | -0-           |
| Interior               | -0-        | -0-           | -0-           | -0-           | -0-           | -0-           |
| Rocky Mtn.             | 8,135      | 12,877        | 12,574        | 13,954        | 13,927        | 12,534        |
| Colorado               | 8          | -0-           | -0-           | 153           | 213           | 177           |
| TOTAL                  | 8,143      | 12,877        | 12,574        | 14,107        | 14,140        | 12,711        |

# TABLE 3-25 ORIGIN OF COAL CONSUMED IN COLORADO (In Thousands of Short Tons)

| STEAM         | 1978   | 1979    | 1980   | 1981   | 1982   | 1983   |
|---------------|--------|---------|--------|--------|--------|--------|
| Eastern       | -0-    | -0-     | -0-    | -0-    | -0-    | -0-    |
| Interior      | -0-    | -0-     | -0-    | -0-    | -0-    | -0-    |
| Rocky Mtn.    | 3,094  | 3,051   | 3,178  | 3,323  | 3,948  | 4,495  |
| Colorado      | 6,014  | 8,526   | 8,405  | 8,269  | 8,154  | 7,607  |
| TOTAL         | 9,108  | 11,577  | 11,583 | 11,592 | 12,102 | 12,102 |
|               |        | • • • • | ,      | ,      | ,      | ,      |
| MET           | 0      | 0       | 0      | 1.0    | 0      | 0      |
| Eastern       | 8      | -0-     | -0-    | 19     | -0-    | -0-    |
| Interior      | -0-    | 206     | 124    | 210    | 67     | -0-    |
| Rocky Mtn.    | -0-    | -0-     | -0-    | -0-    | -0-    | -0-    |
| Colorado      | 641    | 880     | 764    | 732    | 292    | -0-    |
| TOTAL         | 649    | 1,086   | 888    | 961    | 359    | -0-    |
| INDUSTRIAL    |        |         |        |        |        |        |
| Eastern       | 17     | -0-     | 2      | -0-    | -0-    | -0-    |
| Interior      | 121    | -0-     | 84     | 2      | -0-    | -0-    |
| Rocky Mtn.    | 75     | 45      | 58     | 31     | 54     | 4      |
| Colorado      | 431    | 487     | 708    | 619    | 529    | 657    |
| 7071          |        | 500     |        | 650    | 500    |        |
| TOTAL         | 644    | 532     | 852    | 652    | 583    | 661    |
| RESIDENT/COM. |        |         |        |        |        |        |
| Eastern       | -0-    | -0-     | -0-    | -0-    | -0-    | -0-    |
| Interior      | 41     | -0-     | -0-    | -0-    | -0-    | -0-    |
| Rocky Mtn.    | 26     | 4       | 5      | 12     | 9      | - 9    |
| Colorado      | 28     | 54      | 94     | 82     | 120    | 56     |
|               |        |         |        |        |        |        |
| TOTAL         | 95     | 58      | 99     | 94     | 129    | 65     |
| TOTAL         |        |         |        |        |        |        |
| Eastern       | 25     | -0-     | 2      | 19     | -0-    | -0-    |
| Interior      | 162    | 206     | 208    | 212    | 67     | -0-    |
| Rocky Mtn.    | 3,195  | 3,100   | 3,241  | 3,366  | 4,011  | 4,508  |
| Colorado      | 7,114  | 9,947   | 9,971  | 9,702  | 9,095  | 8,320  |
| TOTAL         | 10 100 | 10 050  | 10 100 | 10 000 | 10 190 | 10 000 |
| TOTAL         | 10,496 | 13,253  | 13,422 | 13,299 | 13,173 | 12,828 |

### TABLE 3-26 ORIGIN OF COAL CONSUMED IN MONTANA (In Thousands of Short Tons)

| STEAM                                                          | 1978                       | 1979                       | 1980                       | 1981                       | 1982                             | 1983                       |
|----------------------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------------|----------------------------|
| Eastern<br>Interior<br>Rocky Mtn.<br>Colorado                  | -0-<br>-0-<br>3,334<br>-0- | -0-<br>-0-<br>3,513<br>-0- | -0-<br>-0-<br>3,462<br>-0- | -0-<br>-0-<br>3,318<br>-0- | -0-<br>-0-<br>2,616<br>3         | -0-<br>-0-<br>2,244<br>-0- |
| TOTAL                                                          | 3,334                      | 3,513                      | 3,462                      | 3,318                      | 2,619                            | 2,244                      |
| MET<br>Lastern<br>Interior<br>Rocky Mtn.<br>Colorado           | -0-<br>-0-<br>-0-<br>-0-   | -0-<br>-0-<br>-0-<br>-0-   | -0-<br>-0-<br>-0-<br>-0-   | -0-<br>-0-<br>-0-<br>-0-   | - 0 -<br>- 0 -<br>- 0 -<br>- 0 - | -0-<br>-0-<br>-0-<br>-0-   |
| TOTAL                                                          | -0-                        | -0-                        | -0-                        | -0-                        | -0-                              | -0-                        |
| INDUSTRIAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado    | -0-<br>-0-<br>171<br>12    | -0-<br>-0-<br>183<br>31    | -0-<br>-0-<br>160<br>23    | -0-<br>-0-<br>232<br>21    | -0-<br>2<br>186<br>9             | 3<br>-0-<br>119<br>4       |
| TOTAL                                                          | 183                        | 214                        | 183                        | 253                        | 197                              | 126                        |
| RESIDENT/COM.<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado | -0-<br>-0-<br>4<br>-0-     | -0-<br>-0-<br>3<br>-0-     | -0-<br>-0-<br>13<br>-0-    | -0-<br>-0-<br>7<br>-0-     | -0-<br>-0-<br>9<br>-0-           | 4<br>-0-<br>3<br>-0-       |
| TOTAL                                                          | 4                          | 3                          | 13                         | 7                          | 9                                | 7                          |
| <u>TOTAL</u><br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado  | -0-<br>-0-<br>3,509<br>12  | -0-<br>-0-<br>3,699<br>31  | -0-<br>-0-<br>3,035<br>23  | -0-<br>-0-<br>3,557<br>21  | -0-<br>2<br>2,811<br>12          | 7<br>-0-<br>2,366<br>4     |
| TOTAL                                                          | 3,521                      | 3,730                      | 3,658                      | 3,578                      | 2,825                            | 2,377                      |

## TABLE 3-27 ORIGIN OF COAL CONSUMED IN NEW MEXICO (In Thousands of Short Tons)

| STEAM                  | 1978         | 1979         | 1980          | 1981          | 1982          | 1983          |
|------------------------|--------------|--------------|---------------|---------------|---------------|---------------|
| STEAM<br>Eastern       | -0-          | -0-          | -0-           | -0-           | 26            | -0-           |
| Interior               | -0-          | -0-          | -0-           | -0-           | -0-           | -0-           |
| Rocky Mtn.             | 8,753        | 8,602        | 10,972        | 11,306        | 12,335        | 14,001        |
| Colorado               | -0-          | 7            | 8             | -0-           | -0-           | -0-           |
| TOTAL                  | 8,753        | 8,609`       | 10,980        | 11,306        | 12,361        | 14,001        |
| MET                    |              |              |               |               |               |               |
| Eastern                | -0-          | -0-          | -0-           | -0-           | -0-           | -0-           |
| Interior               | -0-          | -0-          | -0-           | -0-           | -0-           | -0-           |
| Rocky Mtn.             | -0-          | -0-          | -0-           | -0-           | -0-<br>-0-    | -0-<br>-0-    |
| Colorado               | -0-          | -0-          | -0-           | -0-           | -0-           | -0-           |
| TOTAL                  | -0-          | -0-          | -0-           | -0-           | -0-           | -0-           |
| INDUSTRIAL             |              |              |               |               |               | _             |
| Eastern                | -0-          | -0-          | -0-           | -0-           | 8             | -0-           |
| Interior               | -0-          | -0-          | -0-           | -0-           | -0-<br>104    | -0-<br>-0-    |
| Rocky Mtn.<br>Colorado | 80<br>-0-    | 12<br>81     | -0-<br>7      | 100<br>15     | 15            | -0-<br>95     |
| 0107400                | -0-          | 01           | ,             | 15            | 10            | 50            |
| TOTAL                  | 80           | 93           | 7             | 115           | 127           | 95            |
| RESIDENT/COM.          |              |              |               |               |               |               |
| Eastern                | -0-          | -0-          | -0-           | -0-           | -0-           | -0-           |
| Interior               | -0-          | -0-          | -0-           | -0-           | -0-           | -0-           |
| Rocky Mtn.             | -0-          | 1            | 43<br>2       | 5<br>-0-      | 12<br>1       | 8<br>-0-      |
| Colorado               | -0-          | -0-          | Z             | -0-           | Ţ             | -0-           |
| TOTAL                  | -0-          | 1            | 45            | 5             | 13            | 8             |
| TOTAL                  |              |              | _             |               |               |               |
| Eastern                | -0-          | -0-          | -0-           | -0-           | 34            | -0-           |
| Interior               | -0-          | -0-<br>8,615 | -0-<br>11,015 | -0-<br>11,411 | -0-<br>12,451 | -0-<br>14,009 |
| Rocky Mtn.<br>Colorado | 8,833<br>-0- | 8,015        | 11,015        | 11,411        | 12,451        | 14,009<br>95  |
|                        |              |              |               |               |               |               |
| TOTAL                  | 8,833        | 8,703        | 11,032        | 11,426        | 12,501        | 14,104        |

#### TABLE 3-28 ORIGIN OF COAL CONSUMED IN UTAH (In Thousands of Short Tons)

| STEAM         | 1978  | 1979  | 1980        | 1981  | 1982  | 1983        |
|---------------|-------|-------|-------------|-------|-------|-------------|
| Eastern       | -0-   | -0-   | -0-         | -0-   | -0-   | -0-         |
| Interior      | -0-   | -0-   | -0-         | -0-   | -0-   | -0-         |
| Rocky Mtn.    | 2,896 | 4,239 | 5,224       | 4,829 | 6,135 | 5,155       |
| Colorado      | -0-   | -0-   | -0 <b>-</b> | 8     | 18    | -0-         |
| TOTAL         | 2,896 | 4,239 | 5,224       | 4,837 | 6,153 | 5,155       |
| MET           |       |       |             |       |       |             |
| Eastern       | -0-   | -0-   | -0-         | 87    | -0-   | -0-         |
| Interior      | -0-   | -0-   | -0-         | -0-   | -0-   | -0-         |
| Rocky Mtn.    | 352   | 324   | 318         | 267   | 137   | 33          |
| Colorado      | 1,224 | 1,244 | 1,146       | 1,030 | 695   | 825         |
| TOTAL         | 1,576 | 1,568 | 1,464       | 1,384 | 832   | 858         |
| INDUSTRIAL    |       |       |             |       |       |             |
| Eastern       | -0-   | -0-   | -0-         | -0-   | -0-   | -0-         |
| Interior      | -0-   | -0-   | -0-         | -0-   | -0-   | -0-         |
| Rocky Mtn.    | 795   | 843   | 425         | 567   | 798   | 673         |
| Colorado      | -0-   | 2     | 2           | 24    | 15    | 24          |
| TOTAL         | 795   | 845   | 427         | 591   | 813   | 697         |
| RESIDENT/COM. |       |       |             |       |       |             |
| Eastern       | -0-   | -0-   | -0-         | -0-   | -0-   | -0-         |
| Interior      | -0-   | -0-   | -0-         | -0-   | -0-   | -0-         |
| Rocky Mtn.    | 71    | 144   | 238         | 196   | 177   | 147         |
| Colorado      | -0-   | 1     | -0-         | -0-   | -0-   | -0-         |
| TOTAL         | 71    | 145   | 238         | 196   | 177   | 147         |
| TOTAL         |       |       |             |       |       |             |
| Eastern       | -0-   | -0-   | -0-         | 87    | -0-   | -0-         |
| Interior      | -0-   | -0    | -0-         | -0-   | -0-   | -0-         |
| Rocky Mtn.    | 4,114 | 5,550 | 6,205       | 5,859 | 7,247 | 6,008       |
| Colorado      | 1,224 | 1,247 | 1,148       | 1,062 | 728   | 84 <b>9</b> |
| TOTAL         | 5,338 | 6,797 | 7,353       | 7,008 | 7,975 | 6,857       |

## TABLE 3-29 ORIGIN OF COAL CONSUMED IN WYOMING (In Thousands of Short Tons)

| STEAM                  | 1978       | 1979         | 1980         | 1981        | 1982         | 1983         |
|------------------------|------------|--------------|--------------|-------------|--------------|--------------|
| Eastern                | -0-        | -0-          | -0-          | -0-         | -0-          | -0-          |
| Interior               | -0-        | -0-          | -0-          | -0-         | -0-          | -0-          |
| Rocky Mtn.             | 11,551     | 14,211       | 16,547       | 17,612      | 18,448       | 14,731       |
| Colorado               | -0-        | -0-          | -0-          | -0-         | -0-          | -0-          |
| TOTAL                  | 11,551     | 14,211       | 16,547       | 17,612      | 18,448       | 14,731       |
| MET                    |            |              |              |             |              |              |
| Eastern                | -0-        | -0-          | -0-          | -0-         | -0-          | -0-          |
| Interior               | -0-        | -0-          | -0-          | -0-         | -0-          | -0-          |
| Rocky Mtn.<br>Colorado | -0-<br>-0- | -0-<br>-0-   | -0-<br>-0-   | -0-<br>-0-  | -0-<br>-0-   | -0-<br>-0-   |
| CUTUTAUU               | -0-        | -0-          | -0-          | -0-         | -0-          | -0-          |
| TOTAL                  | -0-        | -0-          | -0-          | -0-         | -0-          | -0-          |
| INDUSTRIAL             |            |              |              |             |              |              |
| Eastern                | -0-        | -0-          | -0-          | -0-         | -0-          | -0-          |
| Interior               | 1          | -0-          | -0-          | -0-         | -0-          | -0-          |
| Rocky Mtn.<br>Colorado | 1,511<br>1 | 1,697<br>-0- | 1,662<br>-0- | 1,610<br>77 | 1,337<br>125 | 1,532<br>140 |
| COTOFAdo               | T          | -0-          | -0-          | //          | 125          | 140          |
| TOTAL                  | 1,513      | 1,697        | 1,662        | 1,687       | 1,462        | 1,672        |
| RESIDENT/COM.          |            |              |              |             |              |              |
| Eastern                | -0-        | -0-          | -0-          | -0-         | -0-          | -0-          |
| Interior               | -0-        | -0-          | -0-          | -0-         | -0-          | -0-          |
| Rocky Mtn.             | ຼ58        | ູ35          | 105          | 113         | 144          | 104          |
| Colorado               | -0-        | -0-          | -0-          | -0-         | 3            | -0-          |
| TOTAL                  | 58         | 35           | 105          | 113         | 147          | 104          |
| TOTAL                  |            |              |              |             |              |              |
| Eastern                | -0-        | -0-          | -0-          | -0-         | -0-          | -0-          |
| Interior               | 1          | -0-          | -0-          | -0-         | -0-          | -0-          |
| Rocky Mtn.             | 13,120     | 15,943       | 18,314       | 19,335      | 19,929       | 16,367       |
| Colorado               | 1          | -0-          | -0-          | 77          | 128          | 140          |
| TOTAL                  | 13,122     | 15,943       | 18,314       | 19,412      | 20,057       | 16,507       |
|                        |            |              |              |             |              |              |

## TABLE 3-30MARKETSHARE OF POINT-OF-ORIGIN COAL<br/>CONSUMED IN MOUNTAIN MARKET REGION

|               |        |        | •      |        |        |        |
|---------------|--------|--------|--------|--------|--------|--------|
| STEAM         | 1978   | 1979   | 1980   | 1981   | 1982   | 1983   |
| Eastern       | -0-    | -0-    | -0-    | -0-    | 0.04   | -0-    |
| Interior      | -0-    | -0-    | -0-    | -0-    | -0-    | -0-    |
| Rocky Mtn.    | 86.11  | 83.94  | 86.05  | 86.56  | 87.25  | 87.23  |
| Colorado      | 13.89  | 16.06  | 13.95  | 13.44  | 12.71  | 12.77  |
| 00101200      | 13.09  | 10.00  | 13.95  | 13.44  | 12.71  | 12.11  |
| TOTAL         | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| MET           |        |        |        |        |        |        |
| Eastern       | 0.26   | 0      | 0      | 4 50   | -0-    | 0      |
|               | 0.36   | -0-    | -0-    | 4.52   |        | -0-    |
| Interior      | -0-    | 7.76   | 5.27   | 8.96   | 5.63   | -0-    |
| Rocky Mtn.    | 15.82  | 12.21  | 13.52  | 11.39  | 11.50  | 3.85   |
| Colorado      | 83.82  | 80.03  | 81.21  | 75.14  | 82.87  | 96.15  |
| TOTAL         | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
|               | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| INDUSTRIAL    |        |        |        |        |        |        |
| Eastern       | 0.47   | -0-    | 0.05   | -0-    | 0.17   | 0.08   |
| Interior      | 3.34   | -0-    | 2.22   | 0.04   | 0.04   | -0-    |
| Rocky Mtn.    | 84.02  | 88.58  | 76.18  | 79.64  | 80.47  | 73.72  |
| ÷             |        |        |        |        |        | 26.21  |
| Colorado      | 12.17  | 11.42  | 21.55  | 20.31  | 19.32  | 20.21  |
| TOTAL         | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| DESTDENT (COM |        |        |        |        |        |        |
| RESIDENT/COM. | 0      | 0      | · •    | 0      | 0      | 1 01   |
| Eastern       | -0-    | -0-    | -0-    | -0-    | -0-    | 1.21   |
| Interior      | 17.98  | -0-    | -0-    | -0-    | -0-    | -0-    |
| Rocky Mtn.    | 69.74  | 77.27  | 80.80  | 80.24  | 73.89  | 81.87  |
| Colorado      | 12.28  | 22.73  | 19.20  | 19.76  | 26.11  | 16.92  |
|               |        |        |        |        |        |        |
| TOTAL         | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| TOTAL         |        |        |        |        |        |        |
| Eastern       | 0.05   | -0-    | nil    | 0.15   | 0.05   | 0.01   |
|               |        |        |        |        |        |        |
| Interior      | 0.33   | 0.34   | 0.31   | 0.31   | 0.10   | -0-    |
| Rocky Mtn.    | 82.72  | 81.21  | 82.90  | 83.51  | 85.43  | 85.19  |
| Colorado      | 16.90  | 18.45  | 16.78  | 16.02  | 14.42  | 14.80  |
|               |        |        |        |        |        |        |
| TOTAL         | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
|               |        |        |        |        |        |        |

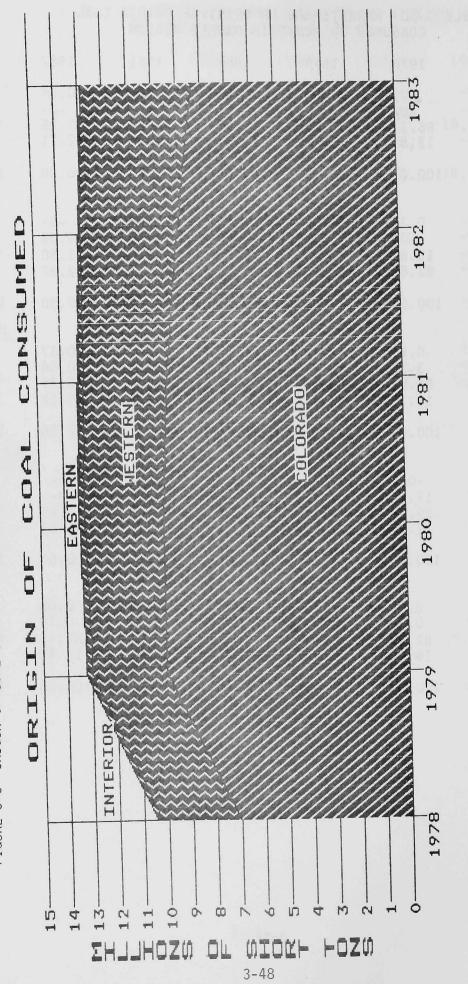



FIGURE 3-5 ORIGIN OF COAL CONSUMED IN COLORADO

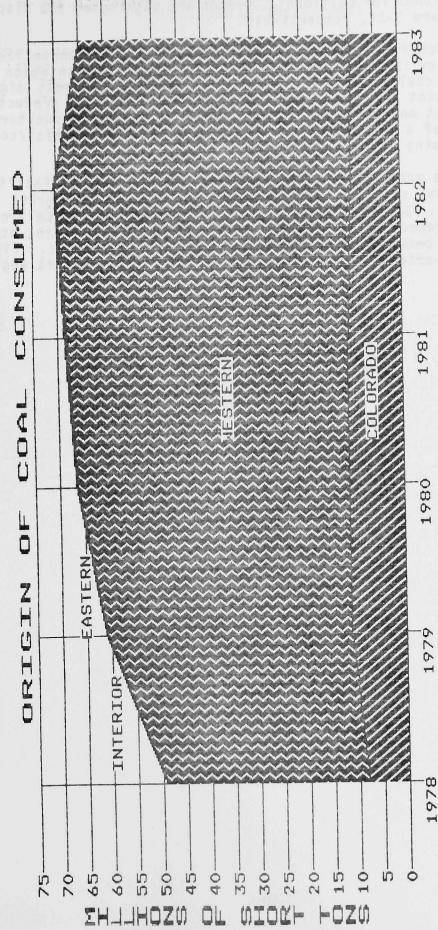



FIGURE 3-6 ORIGIN OF COAL CONSUMED IN MOUNTAIN MARKET REGION

#### 3.3.5 Pacific Market Region

Table 3-31 shows coal consumption trends for states in the Pacific Market Region. Coal use trends for California, Oregon and Washington are displayed in Tables 3-32, 3-33 and 3-34, respectively.

Coal consumption peaked in 1980 and is quite variable. On an annualized basis, 1983 coal consumption is down 39 percent from 1982 levels. Washington state is the largest steam coal consumer. California retains the most significant industrial coal market and, until 1983, a significant met coal product market. A steam coal product market in California opened in the first quarter of 1984 with requirements of a cool water gasification plant. Residential/commercial use of coal is growing in Washington state.

Table 3-35 lists the marketshare of point-of-origin coal for the Pacific Market Region. Western coal supplies over 98 percent of the Pacific Market Region's domestic coal needs. Colorado supplied 10 to 44 percent of the California met coal product requirement up until 1982. Rocky Mountain producers, other than Colorado, provided between 90 and 96 percent of all coal needs. Figure 3-7 shows the point-of-origin of coal consumed in the Pacific Market Region.

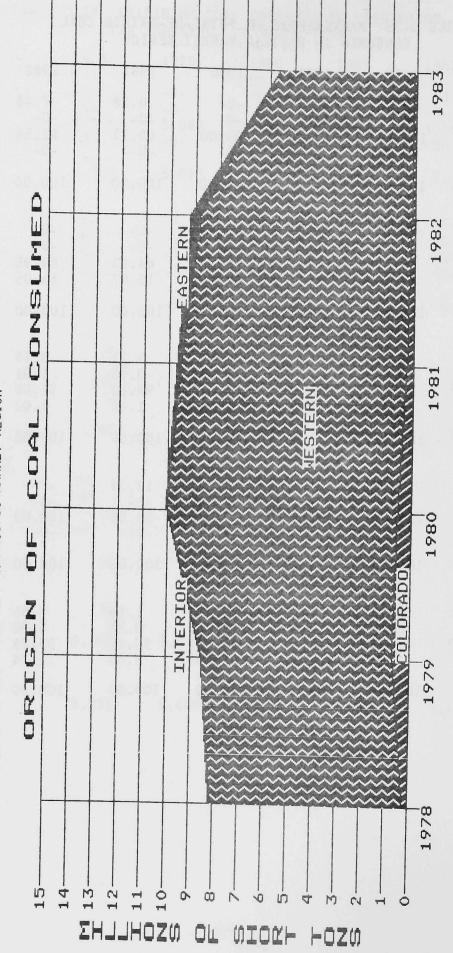
#### TABLE 3-31 ORIGIN OF COAL CONSUMED IN PACIFIC MARKET REGION (In Thousands of Short Tons)

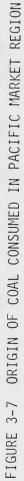
| STEAM                                                          | 1978                       | 1979                       | 1980                       | 1981                       | 1982                       | 1983                       |
|----------------------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Eastern<br>Interior<br>Rocky Mtn.<br>Colorado                  | -0-<br>-0-<br>4,804<br>-0- | -0-<br>-0-<br>5,063<br>-0- | -0-<br>-0-<br>6,231<br>-0- | 16<br>-0-<br>5,791<br>-0-  | 427<br>-0-<br>5,296<br>-0- | -0-<br>-0-<br>3,778<br>-0- |
| TOTAL                                                          | 4,804                      | 5,063                      | 6,231                      | 5,807                      | 5,723                      | 3,778                      |
| MET<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado           | 1<br>-0-<br>1,162<br>280   | -0-<br>-0-<br>922<br>726   | -0-<br>-0-<br>1,199<br>531 | -0-<br>-0-<br>1,161<br>206 | -0-<br>-0-<br>1,262<br>141 | -0-<br>-0-<br>-0-<br>-0-   |
| TOTAL                                                          | 1,443                      | 1,648                      | 1,730                      | 1,367                      | 1,403                      | -0-                        |
| INDUSTRIAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado    | 20<br>14<br>1,838<br>8     | 13<br>33<br>1,828<br>13    | 19<br>33<br>1,904<br>14    | 73<br>20<br>2,224<br>34    | 3<br>35<br>1,876<br>20     | 9<br>32<br>1,424<br>150    |
| TOTAL                                                          | 1,880                      | 1,887                      | 1,970                      | 2,351                      | 1,934                      | 1,615                      |
| RESIDENT/COM.<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado | -0-<br>-0-<br>53<br>-0-    | -0-<br>-0-<br>41<br>-0-    | -0-<br>11<br>164<br>-0-    | 17<br>-0-<br>109<br>1      | -0-<br>-0-<br>174<br>-0-   | -0-<br>-0-<br>245<br>-0-   |
| TOTAL                                                          | 53                         | 41                         | 175                        | 127                        | 174                        | 245                        |
| TOTAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado         | 21<br>14<br>7,857<br>288   | 13<br>33<br>7,854<br>739   | 19<br>44<br>9,498<br>545   | 106<br>20<br>9,285<br>241  | 430<br>35<br>8,608<br>161  | 9<br>32<br>5,447<br>150    |
| TOTAL                                                          | 8,180                      | 8,639                      | 10,106                     | 9,652                      | 9,234                      | 5,638                      |

### TABLE 3-32 ORIGIN OF COAL CONSUMED IN CALIFORNIA (In Thousands of Short Tons)

| STEAM                                                          | 1978                     | 1979                     | 1980                       | 1981                       | 1982                       | 1983                     |
|----------------------------------------------------------------|--------------------------|--------------------------|----------------------------|----------------------------|----------------------------|--------------------------|
| Eastern<br>Interior<br>Rocky Mtn.<br>Colorado                  | -0-<br>-0-<br>-0-<br>-0- | -0-<br>-0-<br>-0-<br>-0- | -0-<br>-0-<br>-0-<br>-0-   | -0-<br>-0-<br>-0-<br>-0-   | -0-<br>-0-<br>-0-<br>-0-   | -0-<br>-0-<br>-0-<br>-0- |
| TOTAL                                                          | -0-                      | -0-                      | -0-                        | -0-                        | -0-                        | -0-                      |
| MET<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado           | 1<br>-0-<br>1,162<br>280 | -0-<br>-0-<br>922<br>726 | -0-<br>-0-<br>1,199<br>531 | -0-<br>-0-<br>1,161<br>206 | -0-<br>-0-<br>1,262<br>141 | -0-<br>-0-<br>-0-<br>-0- |
| TOTAL                                                          | 1,443                    | 1,648                    | 1,730                      | 1,367                      | 1,403                      | -0-                      |
| INDUSTRIAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado    | 2<br>-0-<br>1,125<br>-0- | 2<br>-0-<br>1,081<br>-0- | 2<br>2<br>1,390<br>-0-     | 3<br>-0-<br>1,693<br>-0-   | -0-<br>1<br>1,420<br>-0-   | -0-<br>7<br>1,148<br>143 |
| TOTAL                                                          | 1,127                    | 1,083                    | 1,394                      | 1,696                      | 1,421                      | 1,298                    |
| RESIDENT/COM.<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado | -0-<br>-0-<br>1<br>-0-   | -0-<br>-0-<br>-0-<br>-0- | -0-<br>-0-<br>4<br>-0-     | -0-<br>-0-<br>2<br>-0-     | -0-<br>-0-<br>2<br>-0-     | -0-<br>-0-<br>2<br>-0-   |
| TOTAL                                                          | 1                        | -0-                      | 4                          | 2                          | 2                          | 2                        |
| TOTAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado         | 3<br>-0-<br>2,287<br>280 | 2<br>-0-<br>2,003<br>726 | 2<br>2<br>2,593<br>531     | 3<br>-0-<br>2,856<br>206   | -0-<br>1<br>2,684<br>141   | -0-<br>7<br>1,150<br>143 |
| TOTAL                                                          | 2,571                    | 2,731                    | 3,128                      | 3,065                      | 2,826                      | 1,300                    |

#### TABLE 3-33 ORIGIN OF COAL CONSUMED IN OREGON (In Thousands of Short Tons)


| STEAM                                                                 | 1978                     | 1979                     | 1980                       | 1981                      | 1982                      | 1983                     |
|-----------------------------------------------------------------------|--------------------------|--------------------------|----------------------------|---------------------------|---------------------------|--------------------------|
| Eastern<br>Interior<br>Rocky Mtn.<br>Colorado                         | -0-<br>-0-<br>49<br>-0-  | -0-<br>-0-<br>-0-<br>-0- | -0-<br>-0-<br>1,091<br>-0- | 14<br>-0-<br>1,156<br>-0- | 52<br>-0-<br>1,135<br>-0- | -0-<br>-0-<br>-0-<br>-0- |
| TOTAL                                                                 | 49                       | -0-                      | 1,091                      | 1,170                     | 1,187                     | -0-                      |
| MET<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado                  | -0-<br>-0-<br>-0-<br>-0- | -0-<br>-0-<br>-0-<br>-0- | -0-<br>-0-<br>-0-<br>-0-   | -0-<br>-0-<br>-0-<br>-0-  | -0-<br>-0-<br>-0-<br>-0-  | -0-<br>-0-<br>-0-<br>-0- |
| TOTAL                                                                 | -0-                      | -0-                      | -0-                        | -0-                       | -0-                       | -0-                      |
| INDUSTRIAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado           | -0-<br>11<br>209<br>3    | -0-<br>8<br>227<br>2     | -0-<br>-0-<br>222<br>4     | 58<br>-0-<br>257<br>2     | -0-<br>9<br>150<br>-0-    | 4<br>5<br>99<br>7        |
| TOTAL                                                                 | 223                      | 237                      | 226                        | 317                       | 159                       | 115                      |
| <u>RESIDENT/COM.</u><br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado | -0-<br>-0-<br>6<br>-0-   | -0-<br>-0-<br>6<br>-0-   | -0-<br>-0-<br>11<br>-0-    | 1<br>-0-<br>3<br>-0-      | -0-<br>-0-<br>5<br>-0-    | -0-<br>-0-<br>3<br>-0-   |
| TOTAL                                                                 | 6                        | 6                        | 11                         | 4                         | 5                         | 3                        |
| TOTAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado                | -0-<br>11<br>264<br>3    | -0-<br>8<br>233<br>2     | -0-<br>-0-<br>1,324<br>4   | 73<br>-0-<br>1,416<br>-0- | 52<br>9<br>1,290<br>-0-   | 4<br>5<br>102<br>7       |
| TOTAL                                                                 | 278                      | 243                      | 1,328                      | 1,489                     | 1,351                     | 118                      |


# TABLE 3-34 ORIGIN OF COAL CONSUMED IN WASHINGTON (In Thousands of Short Tons)

| STEAM                                                          | 1978                       | 1979                       | 1980                       | 1981                     | 1982                       | 1983                       |
|----------------------------------------------------------------|----------------------------|----------------------------|----------------------------|--------------------------|----------------------------|----------------------------|
| Eastern<br>Interior<br>Rocky Mtn.<br>Colorado                  | -0-<br>-0-<br>4,755<br>-0- | -0-<br>-0-<br>5,063<br>-0- | -0-<br>-0-<br>5,140<br>-0- | 2<br>-0-<br>4,635<br>-0- | 375<br>-0-<br>4,161<br>-0- | -0-<br>-0-<br>3,778<br>-0- |
| TOTAL                                                          | 4,755                      | 5,063                      | 5,140                      | 4,637                    | 4,536                      | 3,778                      |
| MET<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado           | -0-<br>-0-<br>-0-<br>-0-   | -0-<br>-0-<br>-0-<br>-0-   | -0-<br>-0-<br>-0-<br>-0-   | -0-<br>-0-<br>-0-<br>-0- | -0-<br>-0-<br>-0-<br>-0-   | -0-<br>-0-<br>-0-<br>-0-   |
| TOTAL                                                          | -0-                        | -0-                        | -0-                        | -0-                      | -0-                        | -0-                        |
| INDUSTRIAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado    | 18<br>3<br>504<br>5        | 11<br>25<br>520<br>11      | 17<br>31<br>292<br>10      | 12<br>20<br>274<br>32    | 3<br>25<br>306<br>20       | 5<br>20<br>177<br>-0-      |
| TOTAL                                                          | 530                        | 567                        | 350                        | 338                      | 354                        | 202                        |
| RESIDENT/COM.<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado | -0-<br>-0-<br>46<br>-0-    | -0-<br>-0-<br>35<br>-0-    | -0-<br>11<br>149<br>-0-    | 16<br>-0-<br>104<br>1    | -0-<br>-0-<br>167<br>-0-   | -0-<br>-0-<br>240<br>-0-   |
| TOTAL                                                          | 46                         | 35                         | 160                        | 121                      | 167                        | 240                        |
| TOTAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado         | 18<br>3<br>5,305<br>5      | 11<br>25<br>5,618<br>11    | 17<br>42<br>5,581<br>10    | 30<br>20<br>5,013<br>33  | 378<br>25<br>4,634<br>20   | 5<br>20<br>4,195<br>-0-    |
| TOTAL                                                          | 5,331                      | 5,665                      | 5,650                      | 5,096                    | 5,057                      | 4,220                      |

#### TABLE 3-35 MARKETSHARE OF POINT-OF-ORIGIN COAL CONSUMED IN PACIFIC MARKET REGION

| STEAM                  | 1978   | 1979   | 1980   | 1981         | 1982         | 1983          |
|------------------------|--------|--------|--------|--------------|--------------|---------------|
| Eastern                | -0-    | -0-    | -0-    | 0.28         | 7.46         | -0-           |
| Interior               | -0-    | -0-    | -0-    | -0-          | -0-          | -0-           |
| Rocky Mtn.<br>Colorado | 100.00 | 100.00 | 100.00 | 99.72<br>-0- | 92.54<br>-0- | 100.00<br>-0- |
| colorado               | -0-    | -0-    | -0-    | -0-          | -0-          | -0-           |
| TOTAL                  | 100.00 | 100.00 | 100.00 | 100.00       | 100.00       | 100.00        |
| MET                    |        |        |        |              |              |               |
| Eastern                | 0.07   | -0-    | -0-    | -0-          | -0-          | -0-           |
| Interior               | -0-    | -0-    | -0-    | -0-          | -0-          | -0-           |
| Rocky Mtn.             | 80.53  | 55.95  | 69.31  | 84.93        | 89.95        | -0-           |
| Colorado               | 19.40  | 44.05  | 30.69  | 15.07        | 10.05        | -0-           |
| TOTAL                  | 100.00 | 100.00 | 100.00 | 100.00       | 100.00       | 100.00        |
| INDUSTRIAL             |        |        |        |              |              |               |
| Eastern                | 1.06   | 0.69   | 0.96   | 3.11         | 0.16         | 0.56          |
| Interior               | 0.74   | 1.75   | 1.68   | 0.85         | 1.81         | 1.98          |
| Rocky Mtn.             | 97.77  | 96.87  | 96.65  | 94.60        | 97.00        | 88.17         |
| Colorado               | 0.43   | 0.69   | 0.71   | 1.45         | 1.03         | 9.29          |
| TOTAL                  | 100.00 | 100.00 | 100.00 | 100.00       | 100.00       | 100.00        |
| RESIDENT/COM.          |        |        |        |              |              |               |
| Eastern                | -0-    | -0-    | -0-    | 13.39        | -0-          | -0-           |
| Interior               | -0-    | -0-    | 6.29   | -0-          | -0-          | -0-           |
| Rocky Mtn.             | 100.00 | 100.00 | 93.71  | 86.61        | 100.00       | 100.00        |
| Colorado               | -0-    | -0-    | -0-    | -0-          | -0-          | -0-           |
| TOTAL                  | 100.00 | 100.00 | 100.00 | 100.00       | 100.00       | 100.00        |
| TOTAL                  |        |        |        |              |              |               |
| Eastern                | 0.26   | 0.15   | 0.19   | 1.10         | 4.66         | 0.16          |
| Interior               | 0.17   | 0.38   | 0.44   | 0.21         | 0.38         | 0.57          |
| Rocky Mtn.             | 96.05  | 90.91  | 93.98  | 96.20        | 93.22        | 96.61         |
| Colorado               | 3.52   | 8.55   | 5.39   | 2.50         | 1.74         | 2.66          |
| TOTAL                  | 100.00 | 100.00 | 100.00 | 100.00       | 100.00       | 100.00        |
|                        |        |        |        |              |              |               |





4.0 SUMMARY

4.1 Colorado Coal Industry and Market Structure

A restructuring of the American economy is altering the relationship of coal buyers and coal sellers. The Colorado coal industry is undergoing profound changes in response to this continuing process of restructuring and reorganization. Coal producers and some coal consumers are attempting consolidation. Higher levels of productivity and lower unit costs may be achieved through this mechanism.

Petroleum companies are merging, acquiring assets of other firms and in the process becoming larger and more concentrated within the industry. Coal properties held by petroleum firms are changing hands through these mergers. In the first quarter of 1984 Texaco bought Getty, SoCal purchased Gulf and Damson Oil acquired Dorchester Gas. Together these takeovers involve Colorado coal producers with a 22.8 percent share of the 1983 State coal production. Other mergers and acquisitions have exchanged coal properties since 1983. Williams Companies purchased Northwest Energy, holders of the Hawk's Nest East and West, KN Energy acquired coal mines and properties from CF&I, Apache Energy and Minerals bought the Sunlight Mine in Garfield County, and Perma Resources is positioned in a joint venture in Kaiser Steel coal holdings and markets.

In a short period of time a significant amount of producing mines and coal reserves have changed hands. The impact on the Colorado coal industry is up to individual decisions of managers at new coal-holding companies. The national trend to consolidated holdings within raw material producers is certain to affect the corporate structure of the Colorado coal industry in the short-term.

Economic changes within coal consumers are affecting changes within the coal industry. Steel company mergers fall prey to antitrust laws since the steel industry is highly concentrated. Steelmakers must mobilize to counter foreign steel which is not subject to similar antitrust provisions and are benefitted by lower wage rates. If prevented from reinvesting in the steel industry through mergers, diversification will take place. As an integrated coal consumer, steelmaker mergers would lead to higher productivity met coal operations through closure of inefficient mines and upping capacity at more efficient operations.

The result in increased competitive pressures from either outside competition and/or deregulation will change the coal industry. Railroads, petroleum firms and steelmakers all hold coal. These industries must compete with foreign and domestic products or substitutes of equal or higher quality and lower price. Trade restraints or regulations typically delay the need to compete directly with a foreign product, however, in the long-run competition is necessary.

Free markets bear a price. Surging economies of countries rebuilt after World War II have accelerated market changes since the late 1960's for which America is just now adjusting. Consolidation will affect all industries. Antitrust, to a certain extent, is no longer a valid concept since outside competitors can supply many of the goods once a captive market for American companies. Petroleum firms merge to form larger ones. Similarly, steelmakers and railroads desire to merge to meet other forms of foreign and domestic competition. If not allowed to follow a course directed by the free market, true competition is disallowed to the detriment of all consumers. These three basic industries have a fundamental stake in the coal industry. It is most probable that consolidation in the coal industry will follow consolidation in holding and producing companies.

#### 4.1.1 Colorado Coal Producers

Table 4-1 is a breakdown of Colorado coal production by corporate entity. The categories are as follows:

- . Petroleum
- . Conglomerates, Consortiums and Captive Producers
- . Independents and Others

Petroleum-backed companies lost production marketshare, falling from 43 to 36 percent of overall production from 1981 to 1983. The other categories gained marketshare with only slight decreases in production. Most of the decline in production of Colorado coal occurred at the expense of companies with a petroleum-based parent company.

TABLE 4-1 MARKETSHARE OF PRODUCTION BY CORPORATE ENTITY

| Corporate Type                          |                   | Percent<br>of  |                          | Percent<br>of  | Percent         |
|-----------------------------------------|-------------------|----------------|--------------------------|----------------|-----------------|
| Petroleum                               | 1981<br>8,347,314 | Total<br>43.18 | <u>1983</u><br>6,119,000 | Total<br>36.78 | Change<br>-26.7 |
| Conglomerates<br>Consortiums<br>Captive | 7,849,411         | 40.60          | 7,400,000                | 44.48          | -5.7            |
| Independents<br>and Other               | 3,135,923         | 16.22          | 3,117,000                | 18.74          | -0.6            |
| TOTAL                                   | 19,332,648        | 100.00         | 16,636,000               | 100.00         | -13.9           |

Both production and product quality, in terms of heating value, declined between 1981 and 1983. Table 4-2 lists production by corporate entity and mining method for 1981 and 1983. Independents produced the highest heating value coal in both years with surprising consistency, coincidentally, considering the changes in production mix and marketshare.

Conglomerates, consortiums and captive producers represent dedicated coal production, at this time most coal in this category in Colorado is captive or mainly assigned by contract. Product quality dropped slightly in both underground and surface mines as demand requirements changed.

Petroleum companies lost the greatest marketshare while product quality slipped slightly from underground mines and gained from surface mines. Production from these surface mines fell over 30 percent, but those remaining produce higher quality coal.

## TABLE 4-2 PRODUCTION AND HEATING VALUE BY CORPORATE ENTITY (short tons)

.

#### PETROLEUM COMPANIES

|                                    | Production 1981                     | Btu/1b                     | Production 1983                     | <u>Btu/lb</u>              |
|------------------------------------|-------------------------------------|----------------------------|-------------------------------------|----------------------------|
| Underground<br>Surface<br>Subtotal | 3,162,601<br>5,184,713<br>8,347,314 | 11,605<br>11,171<br>11,335 | 2,624,000<br>3,495,000<br>6,119,000 | 11,207<br>11,305<br>11,262 |
|                                    | CONGLOMERATES, CONS                 | ORTIUMS AND                | CAPTIVE PRODUCERS                   |                            |
| Underground<br>Surface<br>Subtotal | 1,330,511<br>6,518,900<br>7,849,411 | 12,823<br>10,430<br>10,835 | 814,000<br>6,576,000<br>7,400,000   | 11,793<br>10,357<br>10,516 |
|                                    | INDEPENDENTS                        | SAND OTHER                 | PRODUCERS                           |                            |
| Underground<br>Surface<br>Subtotal | 2,090,180<br>1,045,743<br>3,135,923 | 12,360<br>10,629<br>11,788 | 2,330,000<br>787,000<br>3,117,000   | 12,210<br>10,422<br>11,758 |
|                                    |                                     | SUMMARY                    |                                     |                            |
| Underground<br>Subtotal            | 6,583,292                           | 12,093                     | 5,778,000                           | 11,695                     |
| Surface<br>Subtotal                | 12,749,356                          | 10,747                     | 10,858,000                          | 10,667                     |
| GRAND TOTAL                        | 19,332,648                          | 11,205                     | 16,636,000                          | 11,024                     |

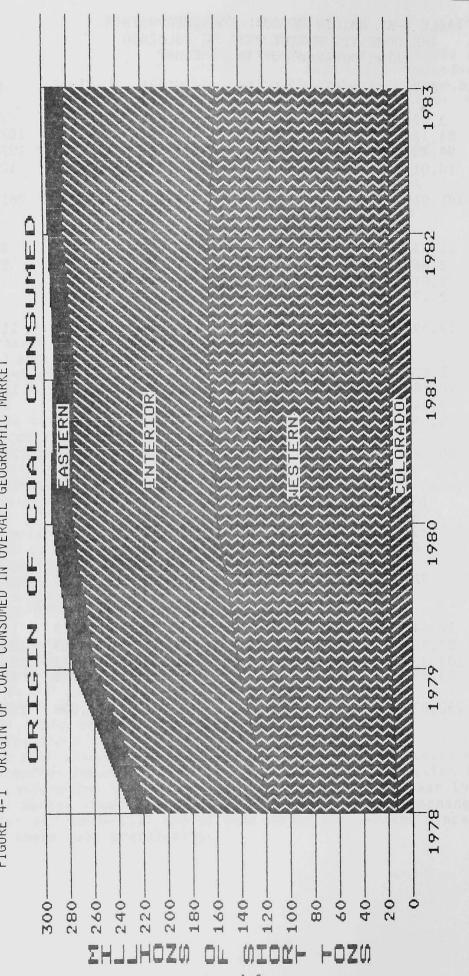
#### 4.1.2 Colorado Coal Consumers

Consumers of Colorado coal are situated over a wide geographic area, and have similarly diverse reasons for consuming Colorado coal. Selection of Colorado coal in national product and geographic markets is determined by its relative desirability with respect to substitutes. Table 4-3 lists the percentage domestic distribution of Colorado coal products.

|                                                    | TABLE | 4-3 | COLOF                               | RADO COAL                           | PRODUCT                             | MARKETS                              | (PERCEI                             | NT)                                 |
|----------------------------------------------------|-------|-----|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|
| Coal<br><u>Product</u>                             |       |     | 1978                                | 1979                                | 1980                                | 1981                                 | 1982                                | 1983                                |
| Steam<br>Met<br>Industrial<br>Residential<br>Total |       |     | 75.3<br>16.4<br>7.9<br>0.4<br>100.0 | 76.6<br>16.8<br>6.2<br>0.4<br>100.0 | 76.3<br>14.0<br>9.1<br>0.6<br>100.0 | 77.9<br>11.5<br>10.1<br>0.5<br>100.0 | 79.7<br>7.2<br>12.3<br>0.8<br>100.0 | 78.5<br>5.4<br>15.4<br>0.7<br>100.0 |

The importance of the steam coal product market to Colorado has increased. In 1978, 75.3 percent of the domestic distribution went to raising steam. In 1983, 78.5 percent of production was devoted to steam. Steam coal production peaked in 1981 at 14.5 mtpy and was at a level of 12.2 mtpy in 1983.

The decline of the steelmaking industry within the market region of Colorado coal reduced production of an important Colorado coal product. Met coal production peaked at 3.0 mtpy in 1979. The 1983 production level was about 850,000 tpy. Met coal constituted 16.4 percent of domestic Colorado production in 1978, however, due to changes in demand it represented only 5.4 percent of production in 1983.


The industrial coal product market is the only market where increases in marketshare of Colorado production and increases of production are noted. In 1978, 7.9 percent of Colorado production went to industrial applications. For the year 1983, 15.4 percent of Colorado coal was used in this product market. In absolute terms, Colorado industrial coal product production increased from 1.0 mtpy in 1978 to 2.3 mtpy in 1983.

Residential and commercial coal products markets for Colorado are relatively unimportant, 65,000 to 107,000 tpy between 1978 and 1983, and have declined in significance. Since 1978 residential/commercial coal product markets increased from 0.4 to 0.7 percent of total Colorado production.

Within the broad domestic geographic market coal demand varied only plus or minus 3 mtpy since 1980 about an average of 294,000 mtpy. Table 4-4 lists the aggregated coal consumption for domestic Colorado coal product markets. Steam coal consumption jumped between 1978 and 1980 and is increasing in small steps. Met coal consumption is down 42 percent since the peak year 1979. Within the geographic market industrial coal consumption is almost unchanged since 1978. Residential and commercial use of coal is up 187 percent since 1978. Figure 4-1 shows these data graphically.

#### TABLE 4-4 ORIGIN OF COAL CONSUMED WITHIN THE DOMESTIC MARKET AREA OF COLORADO (In Thousands of Short Tons)

| STEAM                                                                | 1978                                        | 1979                                        | 1980                                        | 1981                                        | 1982                                        | 1983                                        |
|----------------------------------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
| <u>STEAM</u><br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado        | 3,579<br>84,126<br>94,230<br>10,010         | 3,816<br>98,998<br>114,265<br>13,992        | 3,276<br>103,536<br>132,532<br>14,322       | 2,621<br>94,682<br>137,611<br>14,536        | 2,693<br>104,811<br>137,789<br>13,999       | 3,949<br>107,825<br>137,343<br>12,194       |
| TOTAL                                                                | 191,945                                     | 231,071                                     | 253,666                                     | 249,450                                     | 259,292                                     | 261,311                                     |
| MET<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado                 | 11,233<br>2,668<br>1,514<br>2,176           | 12,229<br>3,669<br>1,246<br>3,060           | 11,210<br>3,507<br>1,517<br>2,631           | 10,759<br>3,041<br>1,428<br>2,141           | 7,412<br>2,615<br>1,399<br>1,273            | 8,358<br>2,380<br>33<br>841                 |
| TOTAL                                                                | 17,591                                      | 20,204                                      | 18,865                                      | 17,369                                      | 12,699                                      | 11,612                                      |
| INDUSTRIAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado<br>TOTAL | 1,526<br>10,706<br>7,346<br>1,044<br>20,622 | 1,780<br>14,479<br>8,656<br>1,141<br>26,056 | 1,748<br>11,521<br>5,859<br>1,705<br>20,833 | 2,322<br>12,321<br>7,018<br>1,887<br>23,548 | 1,538<br>12,451<br>6,839<br>2,160<br>22,988 | 1,375<br>12,181<br>5,175<br>2,385<br>21,116 |
| RESIDENT/COM.<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado       | 104<br>257<br>295<br>65                     | 41<br>264<br>314<br>65                      | 97<br>506<br>689<br>114                     | 75<br>808<br>619<br>96                      | 76<br>1,112<br>706<br>136                   | 85<br>1,236<br>642<br>107                   |
| TOTAL                                                                | 721                                         | 684                                         | 1,406                                       | 1,598                                       | 2,030                                       | 2,070                                       |
| <u>TOTAL</u><br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado        | 16,442<br>97,757<br>103,385<br>13,295       | 17,866<br>117,410<br>124,481<br>18,258      | 16,331<br>119,070<br>140,597<br>18,772      | 15,777<br>110,852<br>146,676<br>18,660      | 11,719<br>120,989<br>146,733<br>17,568      | 13,767<br>123,622<br>143,193<br>15,527      |
| TOTAL                                                                | 230,879                                     | 278,015                                     | 294,770                                     | 291,965                                     | 297,009                                     | 296,109                                     |



ORIGIN OF COAL CONSUMED IN OVERALL GEOGRAPHIC MARKET FIGURE 4-1

4-6

Table 4-5 lists the marketshare of point-of-origin coal destined for the various product markets. The geographic market of Colorado coincides with the geographic market of other states within the Mountain Market Region and the Interior and Eastern Coal Provinces to the east of Colorado. Competition is marked within the Mountain Market Region and is not reduced, but increased with distance from Colorado. Other coal-producing states and provinces provide price and quality competition at every point of sale.

In the steam coal product market western coals, Rocky Mountain and Colorado, lost marketshare since 1981. Consumption of Eastern and Interior Coal Province coals increased slightly. In 1978, Western coals held a 45.7 percent share of the steam coal product market within the Colorado geographic market. In 1983 Western coal producers held a 57.2 percent share of the market, down from a peak marketshare of 61.0 percent in 1981. Colorado is losing marketshare at a faster rate than other western producers. Gains are coming from Eastern, and especially, Interior Coal Province coals. In a stagnant market, loss of marketshare is equivalent to loss in production.

The met coal product market is tied to changes in steel production and to changes within the steel industry. Reorganization of steelmakers consolidated production in facilities at the periphery of the Colorado coal market region. Within the Mountain Market Region only U.S. Steel remains as a consumer of met coal. Due to changes in the geographic market and changes in demand, marketshare of Colorado met coal is at its low point. Consumption of met coal by states within the overall Colorado geographic market shifted demand-derived production to the Eastern Coal Province.

Within one year, 1982 to 1983, the Eastern Coal Province jumped from a 58 to 72 percent share of the met coal market, the Interior Coal Province held at about 20 percent while Colorado fell from 10 to 7.2 percent. As the market is in decline at least in the short-term, production marketshare will fall, however Colorado met coal production will stabilize at the level required by U.S. Steel.

Industrial coal consumption is almost unchanged in real terms since 1978. Despite shifting demand areas, Colorado increased marketshare from 5.0 percent in 1978 to 11.3 percent in 1983. Other western industrial coal product producers lost marketshare. The Eastern and Interior Coal Provinces held a 59.3 percent of the market in 1978 and a 64.2 percent marketshare in 1983. Colorado is gaining marketshare in the industrial coal product market mainly at the expense of other Rocky Mountain coal producers. Due to general slow growth, increased marketshare yields small absolute production gains.

The residential and commercial coal product sector is the most volatile and is most sensitive to weather conditions and economic circumstances. In addition, this coal product is less concerned with product quality than price and hence is the most limited geographic market for coal. The Interior Coal Province marketshare rose from 35.6 percent in 1978 to 59.7 percent in 1983. Western Coal Province coals fell from a total of 58.9 percent in 1978 to 36.2 percent in 1983. Demand increases since 1978 have allowed modest production increases for Western producers despite falling marketshare. The overall market for residential/commercial coal products is small and is served by excess capacity of many mines on the open market.

# TABLE 4-5 MARKETSHARE OF POINT-OF-ORIGIN COAL CONSUMED WITHIN DOMESTIC MARKET AREA OF COLORADO

| STEAM                                                                | 1978                                     | 1979                                     | 1980                                     | 1981                                     | 1982                                     | 1983                                      |
|----------------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|
| Eastern<br>Interior<br>Rocky Mtn.<br>Colorado                        | 1.86<br>43.83<br>49.09<br>5.22           | 1.65<br>42.84<br>49.45<br>6.06           | 1.29<br>10.82<br>52.25<br>5.65           | 1.05<br>37.96<br>55.17<br>5.83           | 1.04<br>40.42<br>53.14<br>5.40           | 1.51<br>41.26<br>52.56<br>4.67            |
| TOTAL                                                                | 100.00                                   | 100.00                                   | 100.00                                   | 100.00                                   | 100.00                                   | 100.00                                    |
| MET<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado                 | 63.86<br>15.17<br>8.61<br>12.37          | 60.53<br>18.16<br>6.17<br>15.15          | 59.42<br>18.59<br>8.04<br>13.95          | 61.94<br>17.51<br>8.22<br>12.33          | 58.37<br>20.59<br>11.02<br>10.02         | 71.98<br>20.50<br>0.28<br>7.23            |
| TOTAL                                                                | 100.00                                   | 100.00                                   | 100.00                                   | 100.00                                   | 100.00                                   | 100.00                                    |
| INDUSTRIAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado<br>TOTAL | 7.40<br>51.92<br>35.62<br>5.06<br>100.00 | 6.83<br>55.57<br>33.22<br>4.38<br>100.00 | 8.39<br>55.30<br>28.12<br>8.18<br>100.00 | 9.86<br>52.32<br>29.80<br>8.01<br>100.00 | 6.69<br>54.16<br>29.75<br>9.40<br>100.00 | 6.51<br>57.69<br>24.51<br>11.29<br>100.00 |
| RESIDENT/COM.<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado       | 14.42<br>35.64<br>40.92<br>9.02          | 5.99<br>38.60<br>45.91<br>4.38           | 6.90<br>35.99<br>49.00<br>8.11           | 4.69<br>50.56<br>38.74<br>6.01           | 3.74<br>54.78<br>34.78<br>6.70           | 4.11<br>59.71<br>31.01<br>5.17            |
| TOTAL                                                                | 100.00                                   | 100.00                                   | 100.00                                   | 100.00                                   | 100.00                                   | 100.00                                    |
| TOTAL<br>Eastern<br>Interior<br>Rocky Mtn.<br>Colorado               | 7.12<br>42.34<br>44.78<br>5.76           | 6.43<br>42.23<br>44.77<br>6.57           | 5.54<br>40.39<br>47.70<br>6.37           | 5.40<br>37.97<br>50.24<br>6.39           | 3.95<br>40.74<br>49.40<br>5.91           | 4.65<br>41.75<br>48.36<br>5.24            |
| TOTAL                                                                | 100.00                                   | 100.00                                   | 100.00                                   | 100.00                                   | 100.00                                   | 100.00                                    |

Statistical analysis of point-of-origin of coal among all geographic markets of Colorado coal indicated no relation of the behavior of other Rocky Mountain producers to production from Colorado. Only the East and West South Central and Mountain Market Regions showed significant correlations, r2 of 0.95 and 0.99, respectively. The correspondence is indicative of a westward shift in preference of point-of-origin in the Gulf Coast market, however, no cause and effect is demonstrated. In the Mountain Market Region, a high correlation was observed. Here the relationship is inverse since the Mountain Market Region supplies almost all of its own coal, increasing marketshare of Wyoming coal decreases that of Colorado. The notion that a "pull-up" effect from increased demand of Wyoming coal will increase coal demand from Colorado is not supported statistically.

The coal marketplace is increasingly price competitive. The Colorado coal industry is, on average, a high-cost producer of coal. The limits of the Colorado geographic market are contained, in part, by transport costs higher than those due to distance alone. Colorado's relatively rugged physiography is the prime determinant of mining method selection and a deterrent to low rail transport charges.

Colorado coal product desirability is declining and the geographic market is shrinking. Delivered equivalent price is the criteria most coal buyers use to discriminate between various coals. Reducing either transport charge or mined cost of coal or both may restore price competitiveness. The ability of Colorado producers to become price-searchers and still remain economic will determine the viability of the Colorado coal product in its historic geographic market.

4.2 Cost of Colorado Coal

4.2.1 Cost of Coal

Table 4-6 lists mining productivity by state, mining method and region. Within the Western Coal Province only Utah has lower overall productivity per miner hour than does Colorado. Underground mining requires greater amounts of labor input than do surface mines. Colorado relies extensively on underground mining, and surface mining in Colorado is unable to achieve the productivity of Powder River Basin mines in Wyoming or Montana due to dissimilar geologic conditions.

Since Colorado coal is losing marketshare based, apparently, on price an examination of the pricing mechanism is required. The geology of coal regions, coal fields and individual mines impinges directly upon cost and price setting. Product quality and price are inseparable in this respect.

In general, Colorado coal production regions are located in more rugged terrain than the coal fields in the Powder River Basin of Wyoming and Montana. This physiographic difference influenced the development of railroads, chief transporters of coal, and selection of current mining methods. Colorado's rugged terrain and more restrictive geologic settings limits sites available for surface mining. Surface mines yield two-thirds of Colorado's coal production, however, the mines are smaller and not directly cost-competitive with those in the Powder River Basin.

# TABLE 4-6U.S. COAL MINING PRODUCTIVITY BY COAL PROVINCE<br/>AND STATE AND BY TYPE OF MINING: 1982<br/>(Short Tons of Coal Produced per Miner Hour)

|                          |              | 1982         |              |
|--------------------------|--------------|--------------|--------------|
| Coal Producing           | Total        | Type of M    | ining        |
| Region and State         | Productivity | Underground  |              |
| U.S. Total               | 2.11         | 1.37         | 3.36         |
| Eastern Total<br>Alabama | 1.51<br>1.52 | 1.28<br>1.03 | 2.06<br>2.35 |
| Kentucky, Eastern.       | 1.79         | 1.48         | 2.33         |
| Maryland                 | 1.85         | 1.58         | 2.24         |
| Ohio                     | 1.63         | 1.08         | 2.19         |
| Pennsylvania             | 1.40         | 1.13         | 1.75         |
| Tennessee                | 1.29         | 1.18         | 1.54         |
| Virginia                 | 1.47         | 1.38         | 2.00         |
| West Virginia            | 1.38         | 1.29         | 2.01         |
|                          | 1.00         | 1.13         | 2.01         |
| Interior Total           | 2.38         | 1.65         | 2.93         |
| Arkansas                 | 0.86         | _            | 0.86         |
| Illinois                 | 1.97         | 1.68         | 2.57         |
| Indiana                  | 2.61         | 1.77         | 2.68         |
| Io wa                    | 2.06         | -            | 2.06         |
| Kansas                   | 2.15         | -            | 2.15         |
| Kentucky,Western         | 2.01         | 1.59         | 2.58         |
| Missouri                 | 2.25         | -            | 2.25         |
| Oklahoma                 | 1.66         | 1.29         | 1.66         |
| Texas                    | 5.33         | -            | 5.33         |
| Western Total            | 6.26         | 1.88         | 8.90         |
| Alaska                   | 5.96         | -            | 5.96         |
| Arizona                  | 6.22         | -            | 6.22         |
| Colorado                 | 2.68         | 1.62         | 4.25         |
| Montana                  | 12.27        | -            | 12.27        |
| New Mexico               | 5.33         | 1.13         | 6.17         |
| North Dakota             | 9.27         | -            | 9.27         |
| Utah                     | 2.05         | 2.05         | -            |
| Washington               | 3.41         | -            | 3.41         |
| Wyoming                  | 11.06        | 2.04         | 11.67        |
|                          |              |              |              |

(Modified after EIA Production Report, 1983)

Table 4-7 shows the marketshare of Colorado coal production by region for 1981 and 1983. The largest marketshare for coal consumed in-state is enjoyed by the Green River Coal Region with about 75 percent. In the out-of-state market the Uinta Coal Region has a 66 percent marketshare followed by the Green River Coal Region with 24 percent. The most significant change in marketshare fell upon the Raton Mesa Coal Region where the in-state product market for met coal was nonexistent. Since coal is a demand-derived commodity, mining has ceased for the duration of the decline of the met coal product market. Similarly, recessionary effects may be the cause for decline in marketshare in the North Park and San Juan River Coal Regions where coals are used mainly for industrial and commercial purposes in relatively small geographic markets.

#### TABLE 4-7 MARKETSHARE OF PRODUCTION AND DISTRIBUTION OF COLORADO COAL BY COAL REGION

| Coal Region | In-    | State  | Out-of-State |        |  |
|-------------|--------|--------|--------------|--------|--|
| -           | 1981   | 1983   | 1981         | 1983   |  |
| Canon City  | 1.31   | 6.42   | 1.76         | 4.00   |  |
| Denver      | 0.08   | 1.82   | -0-          | -0-    |  |
| Green River | 74.17  | 75.21  | 29.31        | 24.26  |  |
| North Park  | 0.32   | 0.04   | 5.65         | 1.37   |  |
| Raton Mesa  | 7.12   | -0-    | 0.75         | 0.61   |  |
| San Juan    | 0.96   | 0.89   | 4.37         | 3.42   |  |
| Uinta       | 16.05  | 15.62  | 58.15        | 66.34  |  |
| Total       | 100.01 | 100.00 | 99.99        | 100.00 |  |

It is not surprising that the Green River and Uinta Coal Regions supply much of the coal to Colorado's in-state and out-of-state markets. The coals of the two regions, despite wide variations in nomenclature, are correlative. In other words, the regions are segregated mainly by physiographic differences, and coals are influenced by localized geologic conditions. For example, the Uinta Coal Region is composed of rugged terrain with mainly underground mines while the Green River Coal Region is of more moderate topography and mining is mainly by surface methods.

The Green River Coal Region has a 75 percent marketshare of 1983 in-state consumption. Approximately 94 percent of this amount is surface-mined coal. The typical heating value content of Green River Coal Region coals is about 10,600 Btu/lb. The Uinta Coal Region has a 66 percent marketshare of the 1983 out-of-state product market. Nearly 60 percent of this amount is mined by underground methods. The weighted average heating value for underground-mined coal in the out-of-state market is 11,974 Btu/lb. The higher heating value of Uinta Coal Region coals is ascribed to higher geothermal gradients associated with Tertiary volcanism in the Gunnison area. Coals were locally heated higher ranks than similar near-surface coals elsewhere within the coal region.

Equivalent cost is the determining factor in the decision to purchase coal. Low-cost equivalents are sought, and high-cost equivalents are the supply of last resort. Table 4-8 lists average 1982 F.O.B. mine price by state and mining method. The 1982 weighted average price of U.S. coal was \$27.25. In the national coal market Eastern Coal Province producers are the high cost suppliers, Interior Coal Province coals produce at mid-range and western miners are the low-cost producers.

# TABLE 4-8U.S. COAL PRODUCTION AND AVERAGE MINE PRICE<br/>BY COAL PRODUCING REGION: 1982(In thousands of short tons)--From EIA Coal Production Reports

| Coal Producing                                                                                                           | Total                                                                                          | Total Average                                                        |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Region and State                                                                                                         | Production                                                                                     | Mine Price (\$)                                                      |
| U.S. Total                                                                                                               | 832,524                                                                                        | 27.25                                                                |
| Eastern Total                                                                                                            | 427,889                                                                                        | 34.63                                                                |
| Alabama                                                                                                                  | 26,226                                                                                         | 43.23                                                                |
| Kentucky, Eastern                                                                                                        | 109,030                                                                                        | 30.87                                                                |
| Maryland                                                                                                                 | 3,764                                                                                          | 32.45                                                                |
| Ohio                                                                                                                     | 36,337                                                                                         | 32.13                                                                |
| Pennsylvania                                                                                                             | 78,279                                                                                         | 33.71                                                                |
| Tennessee                                                                                                                | 7,287                                                                                          | 29.49                                                                |
| Virginia                                                                                                                 | 39,068                                                                                         | 34.57                                                                |
| West Virginia                                                                                                            | 127,899                                                                                        | 37.72                                                                |
| Interior Total                                                                                                           | 177,910                                                                                        | 24.50                                                                |
| Arkansas                                                                                                                 | 138                                                                                            | 39.93                                                                |
| Illinois                                                                                                                 | 60,259                                                                                         | 28.84                                                                |
| Indiana                                                                                                                  | 31,722                                                                                         | 24.69                                                                |
| Iowa                                                                                                                     | 564                                                                                            | 21.81                                                                |
| Kansas                                                                                                                   | 1,401                                                                                          | 26.61                                                                |
| Kentucky, Western                                                                                                        | 38,900                                                                                         | 29.25                                                                |
| Missouri                                                                                                                 | 5,336                                                                                          | 25.68                                                                |
| Oklahoma                                                                                                                 | 4,770                                                                                          | 32.54                                                                |
| Texas                                                                                                                    | 34,818                                                                                         | 10.13                                                                |
| Western Total<br>Alaska<br>Arizona<br>Colorado<br>Montana<br>New Mexico<br>North Dakota<br>Utah<br>Washington<br>Wyoming | 226,724<br>833<br>12,364<br>18,307<br>27,882<br>19,940<br>17,848<br>17,029<br>4,161<br>108,360 | 15.48<br>w<br>22.48<br>13.57<br>19.19<br>9.14<br>29.42<br>w<br>12.75 |

Within the Rocky Mountain region, Utah and Colorado are high cost producers with F.O.B. mine prices of \$29.42 and \$22.48, respectively. Quality factors make up for a portion of the relatively high price of Colorado coal in the product market for coal, but the geographic market is price-constrained.

Coals from the Green River Coal Region compete directly with Powder River Basin coals in the Colorado steam coal product market. Green River Coal Region coals are of higher quality, compared to Wyoming coals, but higher priced as well. Wyoming coal represents an intervening opportunity in the purchase of coal due to the price differential.

For example, Green River Coal Region coals with a weighted average value of 10,600 Btu/lb may be arbitrarily assigned the weighted average F.O.B. price of \$18.76 for Colorado surface-mined coal. The resulting cost is \$0.88 per million Btu's. On the other hand, Wyoming coal contains a typical heating value of 9,200 Btu/lb. Assigned a weighted average state F.O.B. mine price of \$12.75 per ton the outcome is a Wyoming mine-mouth cost of \$0.69 per million Btu's.

Transport cost adds to delivered cost. Since Wyoming coal is gaining marketshare in Colorado it is apparent that the total cost and desirability of Wyoming coal, mining cost plus transportation, is less than the delivered cost of Colorado coal within the State.

#### 4.2.2 Cost of Transport

Central Colorado was bypassed in the building of the first transcontinental railroads. This factor is significant since subsequent development moved away from the main line into areas developing at the time. This sunk cost greatly influences the marketability of coal today. Some areas of Colorado are poorly served by rail or served by lightweight rail which prevents unit-train access. Some mines in this situation must truck coal to a railhead which adds to total cost since trucks are nearly four times more expensive on a per-ton-mile basis and lengthens the chain-of-transfer for coal.

For instance, the coal field of North Park cannot be fully developed until the line is upgraded from Walden to Hebron (URS, 1976). The formerly highly productive Durango field must truck coal to railheads in New Mexico for transshipment. In addition, there is no direct connection for coal in northwestern Colorado westward on the Union Pacific line through Wyoming. Limiting the market area reduces the sales potential of Colorado coal in the western United States and export market.

The terrain of Colorado further limits export potential of Colorado coal and receiving a larger share of new contracts. Most production is in northwestern and central-west Colorado and there are only two rail passes to the east, Moffat Tunnel and Tennessee Pass. The Moffat Tunnel brings coal for shipment to points east, Denver and out-of-state. The Tennessee Pass route has the advantage of skirting much of the Front Range; however, it is more difficult and expensive to use since it has steeper grades. Steep grades slow traffic and reduce capacity of a single line track. Grades in excess of 1.0 to 1.4 percent are barriers to movement of unit trains. On steep grades trains must be broken up or slave locomotives must be added to increase drawbar pull (URS, 1979).

The Staggers Rail Act of 1980 effectively deregulated rail rates for hauling coal. The Staggers Act allows contract service and sets rate levels below which rates are not subject to ICC review. Deregulation of rail rates allows competitive forces to operate only when competition is present. The only potential competition railroads face in bulk transport is the slurry pipeline. According to a report in the Wall Street Journal, Energy Transmission Systems, Inc. lost a bid to transport coal by slurry pipeline from Wyoming to Arkansas. The coal purchaser in this case, Arkansas Power and Light, signed with the Chicago and Northwestern Railroad.

A February 1983 ICC proposal would allow railroads to increase rates by 15 percent per year until revenue adequacy is attained (Tukenmez, 1983). Revenue adequacy is defined as a net return on investment equal to the three year average cost of capital. Changing rail rates complicate long-term contract sales. Unpredictable rail rates limits the geographic market and may induce fuel-switching or contract renegotiation when the choice is available.

Projections made by the Coal Supply and Transportation Model indicate that total coal production falls steadily with increasing rail rates (Tukenmez, 1983). Most production declines occur in the west due to longer rail hauls. Coal production shifts from west to east in part due to the relatively lower heating value of many Western Coal Province coals, which is a transport disadvantage in bulk shipments.

Given large increases in transportation costs coal consumers will employ the following mitigation measures:

- . Substitute coal suppliers
- . Substitute transportation methods
- . Substitute fuels

Coal consumers at the outer limits of the geographic market will tend to purchase coal from other suppliers. Due to the lack of economic alternate modes of transportation, most western coal producers are captive to rail haulage. Coal currently enjoys a significant cost advantage over other fuels although rail rates rising to the limit of the marginal cost of an alternate fuel could disrupt coal conversion trends and alter the growth of coal use. Tables 4-9 and 4-10 list rail rate increases interstate and in Colorado since 1978 (King, written commun., 1984).

Export coal carriers were decontrolled in September, 1983. Since western coal producers are typically captive to one railroad the lack of competition in rail service coupled with decontrol is an inequity in selection of western coal for export.

| EFFECTIVE DATE<br>Interstate | TEMPORARY<br>Increase<br>Number | TENPORARY<br>Increase<br>Percentage | PERMANENT<br>Increase<br>Number | PERMAMENT<br>Increase<br>Percentage | TEMPORARY<br>Index number | PERHANENT<br>Index Number |
|------------------------------|---------------------------------|-------------------------------------|---------------------------------|-------------------------------------|---------------------------|---------------------------|
| 1-1-78                       |                                 |                                     |                                 |                                     |                           | 1000                      |
|                              |                                 |                                     | (X-330)                         | (5%)                                |                           |                           |
|                              |                                 |                                     | (X-336)                         | (42)                                |                           |                           |
|                              |                                 |                                     | (X-343)                         | (5%)                                |                           |                           |
| 6-18-78                      |                                 |                                     | X-349                           | 42                                  |                           | 1040                      |
| 12-15-78                     | X-357-A                         | 7.0%                                |                                 |                                     | 1113                      |                           |
| 2-23-79                      | Sup 8                           | 8.07                                |                                 | 87                                  |                           | 1123                      |
| 6-5-79                       | X-311                           | 1.2%                                |                                 |                                     | 1136                      |                           |
| 7-7-79                       | Sup 9                           | 1.47                                |                                 |                                     | 1152                      |                           |
| 7-28-79                      | Sup 13                          | 2.4%                                |                                 |                                     | 1163                      |                           |
| 9-14-79                      | Sup 24                          | 3 <b>. 5%</b>                       |                                 |                                     | 1176                      |                           |
| 10-1-79                      | X-368                           | 7.8%                                |                                 |                                     |                           |                           |
| 10-1-79                      |                                 |                                     | X-368-A                         | 12.5%                               |                           | 1263                      |
| 1-18-80                      | X-311-A                         | 1.1%                                |                                 |                                     | 1277                      |                           |
| 2-27-80                      | X-374                           | 2.01                                |                                 |                                     | 1303                      |                           |
| 4-1-80                       | X-375                           | 4.07                                |                                 |                                     | 1328                      |                           |
| 4-1-80                       | X-375-A                         | 5.17                                |                                 |                                     | 1342                      |                           |
| 4-11-80                      | +X-311-S                        | 1.2%                                |                                 |                                     | 1358                      |                           |
| 5-23-80                      | X-311-B                         | 0.8%                                |                                 |                                     | 1369                      |                           |
| 7-12-80                      | X-37 <b>5</b> -B                | All exceptions                      |                                 |                                     |                           |                           |
| 7-1 <b>2-</b> 80             |                                 |                                     | X-375-C                         | 13.9%                               | 1456                      |                           |
| 12-31-80                     |                                 |                                     | X-386                           | 5.02                                | 1529                      |                           |
| 1-17-81                      | X-311-C                         | 1.17                                |                                 |                                     | 1546                      |                           |
| 3-14-81                      | X-311-D                         | 2.2%                                |                                 |                                     | 1563                      |                           |
| 4-7-81                       | X-311-E                         | 2.9%                                |                                 |                                     | 1573                      |                           |
| 4-10-81                      | €X-311-S                        | -0-                                 |                                 |                                     |                           | 1555                      |
| 6-5-81                       | X-001                           | 4.0%                                |                                 |                                     | 1617                      |                           |
| 7-1-81                       | X-002                           | 2 <b>.8%</b>                        |                                 |                                     | 1662                      |                           |
| 10-1-81                      |                                 |                                     | X-003                           | 8.4%                                |                           | 1686                      |
| 1-1-82                       |                                 |                                     | X-0 <b>82</b>                   | 4.7%                                |                           | 1765                      |
| 1-1-83                       | X-083                           | 1.02                                |                                 |                                     | 1783                      |                           |
| 10-9-83                      |                                 |                                     | X-083-A                         | 1.2%                                |                           | 1786                      |
| 1-1-84                       |                                 | ,                                   | X-0 <b>84</b>                   | 4.12                                |                           | 1859                      |

#### TABLE 4-9 INTERSTATE RATE INCREASES ON COAL IN CHRONOLOGICAL ORDER PRICE INDEX JANUARY 1, 1978=1000

+ X-311-5 was a surcharge which expired--the only rate reduction. (King, written commun., 1984).

| EFFECTIVE DATE<br>Intrastate | TEMPORARY<br>INCREASE<br>NUMBER | TEMPORARY<br>Increase<br>Percenta <del>g</del> e | PERMANENT<br>Increase<br>Number | PERMANENT<br>Increase<br>Percentage | TENPORARY<br>Index Number | PERNANENT<br>Index number |
|------------------------------|---------------------------------|--------------------------------------------------|---------------------------------|-------------------------------------|---------------------------|---------------------------|
| 1-1-78                       |                                 |                                                  |                                 |                                     |                           | 1000                      |
| 2-11-78                      |                                 |                                                  | X-330                           | 5%                                  |                           | 1050                      |
| 8-1-78                       |                                 |                                                  | X-336                           | 47                                  |                           | 1092                      |
| 6-28-79                      |                                 |                                                  | X-343                           | 5%                                  |                           | 1147                      |
| 7-20-79                      | X-311                           | 1.21                                             |                                 |                                     | 1161                      |                           |
| 8-30-79                      | Sup 13                          | 2.4%                                             |                                 |                                     | 1189                      |                           |
| 1-2-80                       | Sup 24                          | ±3.4%                                            |                                 | ·                                   | 1200                      |                           |
| 2-24-80                      | X-311-A                         | 1.17                                             |                                 |                                     | 1213                      |                           |
| 3-5-80                       |                                 |                                                  | X-349                           | 47                                  | 1262                      |                           |
| 4-23-80                      | X-311-S                         | **1.27                                           |                                 |                                     | 1277                      |                           |
| 6-7-80                       |                                 |                                                  | X-357-A                         | 87                                  | 1379                      |                           |
| 6-27-80                      | X-375-A                         | ***5.1%                                          |                                 |                                     |                           |                           |
| 7-7-80                       | X-311-B                         | 0.8%                                             |                                 |                                     | 1390                      |                           |
| 4-10-81                      | X-311-5                         | ±±-0-                                            |                                 |                                     | 1374                      |                           |
| 6-22-81                      |                                 |                                                  | X-368-A                         | 12.5%                               |                           | (1449)                    |
| 6-22-81                      |                                 |                                                  | X-375-C                         | 13.9%                               |                           | (1650)                    |
| 6-22-81                      |                                 |                                                  | X-386                           | 5.0%                                |                           | (1733)                    |
| 6-22-81                      | X-001                           | 4.01                                             |                                 |                                     | 1802                      |                           |
| 7-1-81                       | X-002                           | 2.81                                             |                                 |                                     | 1852                      |                           |
| 10-1-81                      |                                 |                                                  | X-003                           | 8.4%                                |                           | 1879                      |
| 1-1-82                       |                                 |                                                  | X-082                           | 4.72                                |                           | 1967                      |
| 1-1-83                       | X-083                           | 1.02                                             |                                 |                                     | 1987                      |                           |
| 10-9-83                      |                                 |                                                  | X-083-A                         | 1.2%                                |                           | 1991                      |
| 1-1-84                       |                                 |                                                  | X-084                           | 4.17                                |                           | 2073                      |

#### TABLE 4-10 INTRASTATE RATE INCREASES ON COAL IN CHRONOLOGICAL ORDER PRICE INDEX JANUARY 1, 1978 = 1000

NOTE: The intrastate chronology is different because some increases were appealed to the ICC and some were just never filed in Colorado. 6-22-81 was the date of ICC order preempting PUC under Staggers Act. + 0.1% less than interstate by PUC Order after hearing

##X311-S was a surcharge which expired - only rate reduction
###Union Pacific only was granted X375-A in Colorado. The effect on coal rates may be ignored,
generally, intrastate. (King, written commun., 1984).

#### 4.2.3 Cost of Delivered Coal

Table 4-11 lists average F.O.B. cost of Colorado coal by mining method from EIA coal production reports. Between 1978 and 1982 the average cost of Colorado underground-mined coal increased 2.9 percent per year, from \$26.23 in 1978 to \$29.05 per ton in 1982. Surface-mined coal increased in cost at an average rate of 9.8 percent per year from \$13.07 per ton in 1978 to \$18.76 per ton in 1982. Coal prices increased at a rate of 6.96 percent per year between 1978 and 1982.

#### TABLE 4-11 COLORADO MINE PRICES (\$/t)

|      | UNDERGROUND | SURFACE | AVERAGE |
|------|-------------|---------|---------|
| 1978 | 26.23       | 13.07   | 17.37   |
| 1979 | 24.00       | 13.13   | 16.72   |
| 1980 | 27.24       | 16.43   | 19.89   |
| 1981 | 29.33       | 17.45   | 21.38   |
| 1982 | 29.05       | 18.76   | 22.48   |
| 1983 | N/A         | N/A     | N/A     |

Modified from EIA Coal Production Reports

Table 4-12 lists Colorado production by mine and assigns a reported or probable heating value to each operation. The overall weighted average heating value was computed for the years 1978 through 1983. Table 4-13 lists average cost per ton and heating value for Colorado coal. On a cost per million Btu basis Colorado coal increased 6.19 percent per year, from \$0.7725 to \$1.0310 per million Btu's. The average 1983 F.O.B. mine price for Colorado was not available at the time of writing.

Table 4-14 shows the average price of Colorado coal, and the cost of hauling coal interstate from Colorado. The \$10.00 value is an index number and is not intended to represent a specific rail haul. The escalation of interstate rail rates is presented in Table 4-9. The average increase in interstate rail rates was 12.4 percent per year from 1978 to 1983. Applied to the cost and quality of coal, the average delivered cost of coal on a per million Btu basis, increased 8.7 percent per year, from \$1.2173 in 1978 to \$1.8390 per million Btu's in 1983.

Table 4-15 displays the average price of Colorado coal, and the cost of hauling coal within Colorado. Again, the \$10.00 value in 1978 is an index number representative of the escalation of rail rates and not a specific haul. The escalation of intrastate rail rates is presented in Table 4-10. The average annual increase in intrastate rail rates was 15.5 percent per year from 1978 to 1983. Applied to the cost and quality of coal, on a delivered cost per million Btu basis, the average rate of increase was 9.94 percent per year, ranging from \$1.2173 in 1978 to \$1.9333 in 1983.

On average, the cost of interstate and intrastate rail coal hauls is rising faster than the cost of coal. Rapid escalation in delivered cost of coal due primarily to large increases in the cost of rail haulage reduces the marketability of Colorado coal in-state, and in the domestic and international export markets. As a supplier of discretionary coal, rapid increases in the delivered cost of Colorado coal prompt consumers to seek substitutes.

| MINE NAME                       | HEATING VALUE<br>(BTU/LB) | 1978              | 1979                 | 1980                 | 1981                 | 1982              | 1983               |
|---------------------------------|---------------------------|-------------------|----------------------|----------------------|----------------------|-------------------|--------------------|
| ALLEN                           | 13,150                    | 495,120           | 634,700              | 561,737              | 486,705              | 220,763           |                    |
| ANIMAS                          | 11,500                    |                   |                      |                      | ,                    | ,                 | 98,190             |
| APEI                            | 11,758                    | 14,402            |                      | 4,258                | 22,547               | 46,959            | 28,498             |
| BACON                           | 8,815                     |                   |                      | 39,041               | 3,579                |                   |                    |
| BEAR                            | 12,400                    | 226,705           | 250,152              | 239,217              | 259,392              | 91,845            | 179,922            |
| BEAR CREEK                      | 13,000                    | 44,171            | 46,100               | 5,282                |                      |                   |                    |
| BLUE RIBBON                     | 12,600                    | 15,294            | 89,373               | 101,771              | 129,055              | 150,963           | 72,130             |
| BOURG STRIP                     | 9,640                     |                   |                      |                      | 94,634               | 76,614            | 117,807            |
| CAMED                           | 11,800                    |                   | 31,800               | 229,655              | 283,072              | 124,634           |                    |
| CANADIAN STRIP                  | 10,929                    | 193,791           | 97,900               | 21,700               | 136,024              |                   |                    |
| CANON MONARCH<br>Chinney Rock   | 10,700<br>13,230          | 38,676            | 14,284<br>78,786     | 8,425                | 255 017              | 259,477           | 252,500            |
| CISSY LEE                       | 12,600                    | 3,592             | 101100               | 0,423                | 255,013              | 237,477           | 232,300            |
| COAL BASIN                      | 14,500                    | 132,396           | 139,300              | 130,278              | 92,998               | 51,207            |                    |
| COAL GULCH                      | 12,000                    | 13,851            | 3,600                | 100,170              |                      |                   |                    |
| COLORADO COAL NO 1              | 12,200                    |                   |                      |                      |                      | 26,334            |                    |
| COLOWYO                         | 10,728                    | 1,072,113         | 1,699,400            | 2,642,084            | 3,130,390            | 3,153,419         | 3,021,617          |
| DELAGUA NO 1                    | 12,500                    | 25,900            | 39,000               |                      |                      |                   |                    |
| DELAGUA NO 2                    | 12,500                    | 4,000             |                      | 67,756               |                      |                   |                    |
| DESERADO                        | 10,100                    |                   |                      |                      |                      | 32,113            | 186,155            |
| DORCHESTER                      | 11,100                    |                   |                      | 73,317               | 172,599              | 584,832           | 566,174            |
| DUTCH CREEK NO 1                | 14,500                    | 161,208           | 147,100              | 156,533              | 45,386               | 77,463            | 228,813            |
| DUTCH CREEK NO 2                | 14,000                    | 225,464           | 208,200              | 181,145              | 257,492              | 241,927           | 495,757<br>649,326 |
| EAGLE NO 5<br>EAGLE NO 9        | 10,500                    | 539,616<br>79,065 | 556,100<br>173,000   | 473,773<br>180,259   | 693,062<br>70,854    | 1,200,601<br>271  | 42                 |
| EASTSIDE                        | 10,500<br>13,200          | 253               | 1/3,000              | 100,237              | /0,034               | 2/1               | 1,680              |
| EDNA STRIP                      | 10,500                    | 962,841           | 1,165,902            | 1,026,391            | 1,000,921            | 717,865           | 575,471            |
| ELDER                           | 9,500                     | /01,011           | 366                  | 1102010/1            | .,,                  |                   |                    |
| ENERGY STRIP NO 1               | 11,321                    | 2,909,272         | 2,353,291            | 3,338,633            | 3,351,352            | 2,880,373         | 2,669,004          |
| ENERGY STRIP NO 2               | 11,300                    | 261,021           | 654,316              |                      |                      |                   |                    |
| ENERGY STRIP NO 3               | 11,300                    | 334,745           | 425,398              | 255,825              |                      |                   |                    |
| FOIDEL CREEK                    | 11,350                    |                   |                      |                      |                      |                   | 21,549             |
| FRUITA                          | 11,300                    |                   | 1,100                | 2,379                | 2,416                |                   |                    |
| GEC STRIP                       | 11,000                    | 79,986            | 85,628               | 60,994               | 75,904               | 77,779            | 35,375             |
| GRASSY CREEK                    | 11,500                    |                   |                      | 223, 329             | 215,179              | 175,420           | 114,794            |
| HASTINGS STRIP                  | 10,700                    | 2,580             | 10,375               | 47/ 400              | (17.170              | 57 770            |                    |
| HAWKS NEST EAST                 | 12,690                    | 330,997           | 447,398              | 436,409              | 617,630              | 53,330<br>557,337 |                    |
| HAWKS NEST WEST<br>Hayden Gulch | 12,690<br>9,978           |                   | 378,835              | 6,438<br>553,555     | 84,461<br>577,973    | 503,186           | 448,250            |
| HEALEY                          | 12,000                    | 18,258            | 5/01055              | 555,555              | 3174713              | 5051100           | 110,200            |
| HELEN                           | 11,500                    | 10,200            | 19,000               | 11,743               | 5,756                |                   | 14,580             |
| JEWELL                          | 11,500                    | 6,050             |                      |                      | -1                   |                   | .,                 |
| K-400 STRIP                     | 10,000                    | ,                 |                      | 8,515                |                      |                   |                    |
| KEENESBURG                      | 9,000                     |                   |                      | ·                    | 7,293                | 135,651           | 194,033            |
| KING                            | 13,529                    | 66,046            | 93,700               | 87,189               | 135,368              | 121,068           | 65,077             |
| LINCOLN                         | 9,000                     | 72,909            |                      |                      |                      |                   |                    |
| LS WOOD                         | 14,500                    | 318,212           | 269,300              | 220,930              | 224,642              | 156,859           |                    |
| HAD JACK                        | 9,500                     |                   | 152                  | 50                   | 007 054              |                   | 70 700             |
| MARR STRIP                      | 9,700                     | 513,866           | 687,600              | 724,126              | 287,954              | 114,808           | 32,309             |
| MAXWELL                         | 13,150<br>10,3BB          | 86,883<br>1,578   | 125,000<br>3,444     | 181,376<br>13,202    | 175,184<br>53,516    | 70,465            |                    |
| HCCLANE CANYON<br>NEADOWS STRIP | 9,800                     | 207,774           | 201,067              | 17,297               | 9,156                | /0,100            |                    |
| MIDDLE CREEK                    | 9,950                     |                   | 21,019               | 13,435               | .,                   |                   |                    |
| MINE NO 1                       | 9,800                     | 16,962            | 127,440              |                      |                      |                   |                    |
| MT. GUNNISON                    | 11,500                    |                   | ,                    |                      |                      | 96,760            | 326,262            |
| NUNGER CANYON                   | 10,400                    | 80,160            |                      |                      |                      |                   |                    |
| NEWLIN CREEK                    | 12,300                    | 5,342             | 17,671               | 96,324               | 72,359               | 3 <b>8,94</b> 7   | 36,154             |
| NORTHERN NO 1                   | 10,900                    | 100 00-           | 6,244                | 71,959               | 5,800                | 41 377            | 41.015             |
| NUCLA                           | 11,680                    | 102,394           | 121,800              | 93,069               | 60,260               | 61,237            | 41,815             |
| NUGAP                           | 10,500                    | 281               | 113<br>269           | 1,447                | 2,211                | 7,103             | 6,698              |
| OHID CREEK                      | 11,500                    |                   |                      |                      |                      |                   |                    |
| ORCHARD VALLEY                  | 11,000                    | 435,B96           | 722,470              | 761,824              | 976,796              | 1,246,197         | 1,308,883          |
| PEACOCK                         | 13,400                    |                   | 100                  | 656                  | 305                  | 14 442            | 0 700              |
| RED CANYON NO 1                 | 10,600                    | 426               | 9,B40                | 93,258               | 137,698              | 64,442            | 8,728              |
| RIENAU NO 2                     | 10,910                    | 36,001            | 68,266               | 144,991              | 122,781              | 57,228<br>929,323 | 1,923<br>732,637   |
| ROADSIDE                        | 11,800                    | 449,749           | 827,800<br>1,611,805 | 603,464<br>1,778,916 | 664,427<br>1,227,945 | 1,313,711         | 1,220,825          |
| SENECA STRIP<br>Somerset        | 10,700<br>12,500          | 1,372,251 650,210 | 900,777              | 854,697              | 668,622              | 453,409           | 596,020            |
| SUNLIGHT                        | 12,500                    | 487               | 471                  | 884                  | 989                  | 1,218             |                    |
| THOMPSON CREEK NO 1             | 13,004                    | 15,733            | 18,900               | 40,596               | 115,185              | 97,553            | 13,880             |
| THOMPSON CREEK NO 3             | 13,760                    | 18,207            | 14,000               | 1,812                | 4,469                | 11,736            |                    |
| TOMAHAWK                        | 10,000                    | 35,231            | 70,741               | 24,076               | 101,336              | 41,915            |                    |
| TRAPPER                         | 9,800                     | 1,332,985         | 2,328,700            | 2,014,376            | 2,093,012            | 2,001,106         | 2,304,274          |
| TRINIDAD BASIN                  | 13,000                    |                   |                      |                      | 65,039               | 71,739            | 73,908             |
| TWIN PINES                      | 10,500                    | 36,691            | 37,124               | 34,872               | 22,099               |                   |                    |
| VIKING                          | 13,012                    | 16,342            | 49,682               | 23,515               | 37,014               | 1,858             |                    |
| WILLIAMS FORK                   | 9,800                     | 242,097           | 42,900               |                      | 10 775 054           | 10 470 117        | 11 741 616         |
| TOTAL VETCUTED AND VETCUTED     |                           | 14,306,880        |                      |                      | 19,335,854           | 11 097            | 16,741,060         |
| WEIGHTED AVG. (BTU/LB)          |                           | 11,242            | 11,158               | 11,149               | 11,193               | 11,097            | 11,033             |
|                                 |                           |                   |                      |                      |                      |                   |                    |

#### TABLE 4-13 AVERAGE PRICE, HEATING VALUE AND COST PER MILLION BTU'S OF COLORADO COAL

|                                                        | Average Price<br>of Colorado<br>Coal<br>(\$/t)     | Average Heating<br>Value of<br>Colorado Coal<br>(Btu/lb) | Average Cost Per<br>Million Btu's<br>(\$)                |
|--------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| 1978<br>1979<br>1980<br>1981<br>1982<br>1983<br>(Est.) | 17.37<br>16.72<br>19.89<br>21.38<br>22.48<br>22.75 | 11,242<br>11,158<br>11,149<br>11,193<br>11,097<br>11,033 | 0.7725<br>0.7492<br>0.8920<br>0.9551<br>1.0129<br>1.0310 |

## TABLE 4-14AVERAGE INCREASE IN F.O.B. COST OF<br/>COLORADO COAL AND INTERSTATE RAIL RATES

| Year                                                   | Average Price                                      | Interstate                                         | Delivered                                          | Delivered                                                |
|--------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|
|                                                        | of Colorado                                        | Rail Cost                                          | Cost Per                                           | Cost Per                                                 |
|                                                        | Coal                                               | (1978=\$10.00)                                     | Ton                                                | Million Btu's                                            |
|                                                        | (\$/t)                                             | (\$/t)                                             | (\$/t)                                             | (\$)                                                     |
| 1978<br>1979<br>1980<br>1981<br>1982<br>1983<br>(Est.) | 17.37<br>16.72<br>19.89<br>21.38<br>22.48<br>22.75 | 10.00<br>11.13<br>12.63<br>15.29<br>16.86<br>17.83 | 27.37<br>27.85<br>32.52<br>36.67<br>39.34<br>40.58 | 1.2173<br>1.2480<br>1.4584<br>1.6381<br>1.7726<br>1.8390 |

## TABLE 4-15AVERAGE INCREASE IN F.O.B. COST OF<br/>COLORADO COAL AND INTRASTATE RAIL RATES

| Year  | Average Price<br>of Colorado<br>Coal<br>(\$/t) | Intrastate<br>Rail Cost<br>(1978=\$10.00)<br>(\$/t) | Delivered<br>Cost Per<br>Ton<br>(\$/t) | Delivered<br>Cost Per<br>Million Btu's<br>(\$) |
|-------|------------------------------------------------|-----------------------------------------------------|----------------------------------------|------------------------------------------------|
| 1978  | 17.37                                          | 10.00                                               | 27.37                                  | 1.2173                                         |
| 1979  | 16.72                                          | 10.92                                               | 27.64                                  | 1.2386                                         |
| 1980  | 19.89                                          | 11.89                                               | 31.78                                  | 1.4252                                         |
| 1981  | 21.38                                          | 13.90                                               | 35.28                                  | 1.5760                                         |
| 1982  | 22.48                                          | 19.67                                               | 42.15                                  | 1.8992                                         |
| 1983  | 22.75                                          | 19.91                                               | 42.66                                  | 1.9333                                         |
| (Est. | )                                              |                                                     |                                        |                                                |

5.0 REFERENCES

\_\_\_\_

Abt Associates, 1979, Forecasts for western coal/energy development: Western coal planning assistance project, Missouri River Basin Commission.

Anderson, D.L., and Hiatt, D.B., 1976: The transportation of energy commodities, 1972–1985, U.S. Dept. Transportation, 2 vol., rept. no. SS-212-U2-09.

Boreck, D.L., and Murray, D.K., 1979, Colorado coal reserves depletion data and coal mine summaries: Colorado Geol. Survey, Denver, Colorado.

Campbell, T.C., and Katell, Sidney, 1975, Long distance coal transport: unit trains or slurry pipelines: U.S. Bur. Mines Inf. Circ. IC-8690, U.S. Govt. Printing Office, Washington D.C.

Colorado Energy Research Institute, 1981, Colorado energy consumption in 1990 - A preliminary demand forecast and analysis: Colorado Energy Research Institute.

Colorado Mining Association, 1981, Colorado Coal: Colorado Coal Information Committee.

Comptroller General, 1977a, U.S. coal development -- promises, uncertainties: U.S. General Accounting Office, EMD-77-43.

Comptroller General, 1977b, The state of competition in the coal industry: U.S. Government General Accounting Office, EMD-78-22, Washington, D.C.

Comptroller General, 1980, A shortfall in leasing coal from federal lands: what effect on national energy goals: Report to Congress, Washington, D.C.

Council on Wage and Price Stability, 1976, A study of coal prices: Executive Office of the President, Council on Wage and Price Stability, Washington, D.C.

Department of Justice, 1978, Competition in the coal industry - report of the United States Department of Justice, Pursuant to Section 8 of the Federal coal leasing amendments Act of 1975: U.S. Dept. Justice, Washington, D.C.

Energy and Environmental Analysis, Inc., 1981, Feasibility of using coal market projections to appraise potential production of Federal coal leaseholds: EEA, Washington, D.C.

Energy and Minerals Dept., various years, Annual Resources Report: New Mexico Energy and Minerals Dept. annual report.

Energy Information Administration, 1982, Outlook for U.S. Coal: Dept. Energy DOE/EIA - 0333

, 1983a, Coal supply and transportation model: U.S. Dept. Energy, DOE/EIA-0401

, 1983b, Delays and cancellations of coal fired generating capacity: Energy Inf. Admin., DOE/EIA-0406.

, 1983c, Historical Overview of U.S. Coal Exports, 1973-1982: Dept. Energy, DOE/EIA 0413.

, 1983d, Quarterly Coal Report - July to September 1983: Dept. Energy DUE/EIA 0121 (83/3Q).

, 1984a, An assessment of the Quality of Selected EIA Data Series --Coal and Electric Power Data from 1977 to 1982: Dept. Energy DOE/EIA -0292 ('83)

, 1984b, Annual Energy Review 1983: Dept. Energy, DOE/EIA-UC 98. of October 1983: Dept. Energy DOE/EIA - 0249 (83/2), 38 p.

\_\_\_\_\_, 1984c, Directory of Energy Data collection forms: Forms in use

, 1984d, Short-Term Energy Outlook, Quarterly Projections: Dept. Energy DOE/EIA 0202 (84/1 Q)

, 1984e, State Energy Data Report - Consumption Estimates, 1960-1982: Dept. Energy DOE/EIA 0214 (82)

, various dates, Electric Power Monthly: Dept. Energy, Washington, D.C.

,various dates, Monthly Energy Review: Dept. Energy, Washington, D.C.

, various years, Coal Distribution: Dept. Energy, Washington, D.C.

\_\_\_\_\_,various years, Coal Production: Dept. Energy, Washington, D.C.

Energy Research and Development Administration, 1977, Draft environmental impact statement coal research, development and demonstration program: Energy Research and Development Admin. ERDA-1557-D.

Enzer, Hermann, Dupree, Walter and Miller, Stanley, 1975, Energy Perspectives--a presentation of major energy and energy-related data: U.S. Dept. Interior, 024-000-00812-6.

Fred C. Hart Associates and Martin, Joan E., 1980, Opening a coal mine in Colorado: The State permits and permit review procedures: Colorado Energy Research Institute, Golden, Colorado.

Gordon, Richard L., 1975, U.S. coal and the electric power industry: The Johns Hopkins University Press, Baltimore.

Green, J.W., and others, 1980, Colorado coal resources, production and distribution: Energy Policy Coordination Office, Env. Protection Agency.

Guccione, Eugene, 1982, Forecast: Supply and demand - 1982: very good, if...: Coal Mining and Processing, January 1982. Henderson, J.M., 1958, The efficiency of the coal industry, an application of linear programming: Cambridge, Harvard University Press, 146 p.

ICF, Inc., 1976, Coal supply analysis: Federal Energy Admin., Office of Coal, Nuclear and Electric Power Analysis, Washington, D.C.

, 1980, Forecasts and sensitivity analyses of western coal production: ICF, Inc., Washington, D.C.

Jackson, H.M., and Magnuson, W.G., 1977, National Energy Transportation -Volume I - Current systems and movements: Committees on Commerce, Science and Transportation, Publication No. 95-15.

King, Gordon, 1984, written communication.

Laing, Glenn J.S., 1977, Effects of State Taxation on Mining Industry in Rocky Mountain States: Colo. School Mines Quarterly, v.72 no. 2.

Larwood, G.M., and Benson, D.C., 1976, Coal transportation practices and equipment requirements to 1985: U.S. Bur. Mines Inf. Circ. IC 8706.

Lyon, W.H., and Colby, D.S., 1951, Production, consumption and use of fuels and electric energy in the United States in 1929, 1939 and 1947: U.S. Bur. Mines, 90 p.

Martin, J.E., 1980, Market factors and production contingencies determining the present and future demand for Colorado coal: Colorado Energy Research Institute, Lakewood, Colorado.

Milliken, J. Gordon, 1980, Water and Energy in Colorado's Future: Colorado Energy Research Institute, Golden, Colorado, 50 p.

Morse, J.G., and Hebb, D.H., 1976, Colorado energy resources handbook volume 1: coal: Colorado Energy Research Institute, Golden, Colorado.

Mountain West Research, Inc., 1979, Source book for western coal/energy development: Missouri River Basin Commission.

National Academy of Sciences, 1977, Coal as an energy resource - conflicts - consensus: National Acad. Sci., Washington, D.C.

National Petroleum Council, 1973, U.S. Energy Outlook - Coal availability: U.S. Dept. Interior.

Neuberger, J. W., 1972, Southwest Energy study, Summary report: Study management team Federal Task Force.

Office of Technology Assessment, 1981, An assessment of development and production potential of Federal coal leases: Office of Technology Assessment, Washington, D. C.

Peat Marwick, 1983, Western energy transportation study: Peat Marwick.

Perry, Harry, 1983, Coal in the United States: A status report: Science, V. 222, No. 4622, p. 377-389, Oct. 28, 1983.

Rocky Mountain News, various dates, Denver, Colorado.

Rushworth, Peter, Kelso, B.S., and Ladwig, L.R., 1984, Map, Directory and Statistics of Permitted Colorado Coal Mines: Colorado Geological Survey Map Series 23, 132 p., map 1:1,000,000

Schmidt, R. A., 1976, Electric utility industry strategy for research in coal geology in: Coal geology and the future - A symposium organized by the U.S. Geological Survey, Reston, Va., Sept. 27-28, 1976.

Schnapp, Robert M., and Hong, B. D.,, 1983, Port deepening and user fees: Impact on U. S. coal exports: Energy Inf. Admin., DOE/EIA-0400.

Science Applications, Inc., 1983, Coal supply and transportation model - model description and data documentation: Energy Inf. Admin., DOE/EIA-0401

Taylor, Graham and Sussman, Gennifer, 1983, Prospects for Colorado Coal: Colorado Energy Research Institute, Denver, Colorado, 8 p.

Taylor, William, R., and Ladwig, L.R., 1983, Colorado Energy Balance-- 1981 -Plate I -- Coal Production and Distribution and Electrical Power Generation: Colorado Geol. Survey Res. Ser. 26, map.

The 3R Corporation, 1979, Coal transportation in Colorado: An analysis. Colorado Energy Research Institute, Golden, Colorado.

Tukenmez, Ercan, and Paull, Mary K., 1982, Outlook for U. S. Coal: U. S. Dept. Energy, Energy Inf. Admin., DOE/EIA-0333.

Tukenmez, Ercan, 1983, Railroad deregulation: Impact on coal: Energy Inf. Admin., DOE/EIA-0399.

URS Company, 1979, Colorado State rail plan: URS Company.

URS Company, 1976, Coal train assessment - final report: URS Company Denver, Colorado.

U. S. Dept. Energy, 1981, Western coal survey - A survey of coal mining capacity in the West: U. S. Dept. Energy DOE/RA-0045/1.

U. S. Dept. Energy, various years, Energy Data Report, Bituminous and subbituminous coal and lignite distribution: Office of Coal and Electric Power statistics, Energy Inf. Admin., Washington, D. C.

Wall Street Journal, various dates.

Western Governors' Policy Office, 1981, Western steam coal exports to the Pacific basin: Demand Task Group; Western coal export task force - Pacific Basin steam coal export study.

Western Governors' Policy Office, 1981, Western U. S. steam coal exports to the Pacific Basin: Port and marine task group: Port and marine task group western coal export task force, Pacific Basin steam coal export study, Denver, Colorado.

#### SELECTED COAL PUBLICATIONS OF THE COLORADO GEOLOGICAL SURVEY

Bulletin 34-A--BIBLIOGRAPHY, COAL RESOURCES IN COLORADO. R. D. Holt, 1972, 32 p. Compilation through 1971.

Bulletin 41--BIBLIOGRAPHY AND INDEX OF PUBLICATIONS RELATED TO COAL IN COLORADO: 1972-1977. H. B. Fender, D. C. Jones and D. K. Murray, 1978, 54 p.

Resource Series 1--GEOLOGY OF ROCKY MOUNTAIN COAL--A SYMPOSIUM, 1976 D. K. Murray, ed., 1977, 175 p., 15 papers on stratigraphy, physical and chemical properties, analyses, petrology and resource evaluation.

Resource Series 4--PROCEEDINGS OF THE SECOND SYMPOSIUM ON THE GEOLOGY OF ROCKY MOUNTAIN COAl--1977. H. E. Hodgson, ed., 1978, 219 p., 14 papers on depositional environments, mine planning and development, geophysical and computer techniques, and coal petrography.

Resource Series 10--PROCEEDINGS OF THE FOURTH SYMPOSIUM OF THE GEOLOGY OF ROCKY MOUNTAIN COAL, 1980. L. M. Carter, ed., 1980, 131 p.

Resource Series 26--COLORADO ENERGY BALANCE--1981. Plate 1: COAL PRODUCTION AND DISTRIBUTION AND ELECTRICAL POWER GENERATION. W. R. Taylor and L. R. Ladwig, 1983, (1:1,000,000). Data in map and statistical form, source, production, movement and use.

Open-File Report 79-1--COLORADO COAL RESERVE DEPLETION DATA AND COAL MINE SUMMARIES. D. L. Boreck and D. K. Murray, 1979, 65 p., appendix.

Open-File Report 81-7--COLORADO ENERGY ACTIVITY PROFILE. Compiled by L. R. Ladwig, 1983. Looseleaf form.

Map Series 19--THE COAL BED METHANE RESOURCES OF COLORADO. C. M. Tremain and others, 1983, (1:500,000). Data on coal regions as to methane content, sample locations, and resources plus estimated statewide total.

Map Series 23--MAP, DIRECTORY AND STATISTICS OF PERMITTED COLORADO COAL MINES, 1983. Peter Rushworth, Bruce S. Kelso and L. R. Ladwig, 1984, 150 p., map (1:1,000,000).

Special Publication 23--1981 SUMMARY OF COAL RESOURCES IN COLORADO. L. R. Ladwig, 1983. 22 p., 28 figs., 14 tables. Colorado coal-- location, age, beds, resources and revenues, plus federal, private and state lands, taxes, etc.

Special Publication 25--FORECAST OF THE COLORADO COAL INDUSTRY-- PRODUCTION AND EMPLOYMENT--1984 TO 2004, Peter Rushworth and L. R. Ladwig, 1984.